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CARTA DEL EDITOR 
Para esta ocasión, los editores reseñamos brevemente tres obras publicadas en años 

cuya secuencia calendárica coincide con este 2025. 

En 1930, la editorial Verlag S. Hirzel de la ciudad de Leipzig publica la obra titulada “Die 
physikalischen Prinzipien der Quantentheorie” o “Los Principios Físicos de la teoría cuántica”, 
cuyo autor fue Werner Heisenberg, obra basada en una serie de conferencias dictadas por él un 
año antes. Su teoría de matrices es una de las bases de la mecánica cuántica moderna, además 
que su Principio de Incertidumbre cambió toda la perspectiva de la ciencia. En esta obra, 
Heisenberg propone un acercamiento completo físico de la teoría cuántica, incluyendo en ella 
los resultados de sus investigaciones además de analizar los resultados de Niels Bohr, Paul Dirac, 
Jegadish Bose, Luis de Broglie, Enrico Fermi, Albert Einstein, Wolfgang Pauli, Erwin Schrödinger, 
Wilhelm Sommerfeld, Emil Rupp, Charles Thomson, Rees Wilson. El conocimiento de la 
matemática moderna para esa época era una condición necesaria. El texto está dividido en cinco 
partes y un apéndice. 1) Parte introductoria. 2) Crítica a los conceptos físicos de la teoría 
corpuscular. 3) Crítica a los conceptos físicos de la teoría ondulatoria. 4) Interpretación 
estadística de la teoría cuántica. 5) Discusión sobre los experimentos importantes. Apéndice: El 
aparato matemático de la teoría cuántica: 1) El concepto corpuscular de la materia. 2) La teoría 
de la transformación. 3) La ecuación de Schrödinger. 4) El método de la perturbación.5) La 
resonancia entre dos átomos: la interpretación física de la transformación de matrices. 6) El 
concepto corpuscular de la radiación. 7) Estadística Cuántica. 8) El concepto ondulatorio para la 
materia y la radiación. 9) Teoría cuántica de campos ondulatorios. 10) Aplicación de carga 
negativa al movimiento ondulatorio. 11) Prueba de la equivalencia matemática entre la teoría 
cuántica de partículas y la teoría ondulatoria. 12) Aplicación a la teoría de la radiación. De este 
apéndice, la parte (11) el autor analiza que el propósito de la teoría cuántica se enfoca en el 
hecho de que la representación mental de las partículas y del movimiento ondulatorio son, en 
sí, dos aspectos diferentes, pero en una misma realidad física, y aunque es un problema de 
origen puramente físico, es relevante identificar una contraparte a esta dualidad en el contexto 
matemático de la teoría. Esta analogía dentro del contexto de la realidad física se refiere a que 
un mismo conjunto de ecuaciones matemáticas se puede interpretar en términos de cualquiera 
de las imágenes que se adecuen al observador; por ello, la prueba de esta afirmación se puede 
efectuar adecuadamente y de manera general, sin considerar la forma particular del 
Hamiltoniano involucrado. Así, la ecuación de Schrödinger que representa el esquema de la 
partícula para 𝑁𝑁 partículas equivalentes se escribe:  

 

�∑ 𝑂𝑂𝑛𝑛 + ∑ 𝑂𝑂𝑛𝑛𝑛𝑛 + ⋯+𝑁𝑁
𝑛𝑛>𝑚𝑚

𝑁𝑁
𝑛𝑛=1 2𝜋𝜋𝜋𝜋  ∂t

ℎ ∂ �  𝜑𝜑(𝑥𝑥1, … , 𝑥𝑥𝑁𝑁) = 0   [*] 

Donde 𝑜𝑜𝑛𝑛   representa al operador que actúa solamente sobre el espacio de 
coordenadas 𝑥𝑥𝑛𝑛 correspondiente a la enésima partícula, y 𝑂𝑂𝑛𝑛𝑛𝑛 representa una acción sobre las 
co-ordenadas de ambos en la enésima y la m-ésima situación. El análisis que propone 
Heisenberg es sumamente interesante y continua al involucrar el sistema de funciones 
ortogonales en términos tridimensionales que satisfacen condiciones límites cuando son 
expandidas; indica también el uso de matrices que representan los operadores 
correspondientes en el sistema de co-ordenadas de las partículas; además, nota que los valores 
numéricos de los elementos matriciales dependen únicamente de los índices subsecuentes y no 
de las variables 𝑛𝑛,𝑚𝑚. Refiere, además, que para el caso de la estadística Bose-Einstein, se 
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presenta la simetría en los números cuánticos de las partículas, por ello, también se puede 
expresar en términos de funciones relacionadas con el número 𝑁𝑁 de partículas en el r-ésimo 
estado. Conforme describe matemáticamente los objetos cuánticos, va llegando a la conclusión 
de la identidad entre dos ecuaciones y por tanto a la existencia de la equivalencia matemática 
entre las representaciones de la partícula y el movimiento ondulatorio. Además, menciona que 
una prueba similar se puede aplicar para el caso del Principio de Exclusión de Pauli y las 
relaciones de intercambio. Una conclusión de su trabajo se refiere al hecho de que, las teorías 
clásicas de las representaciones corpúsculo-ondulatorias son, en sí, completamente diferentes, 
tanto física como matemáticamente. Sin embargo, las teorías cuánticas de las dos son idénticas. 

En 1969 Bruno Dejon y Peter Henrici editaron con apoyo de la casa editorial Wiley-
Interscience (una división de John Wiley & Sons Ltd), la serie de ponencias llevadas a cabo en el 
Simposio titulado “Constructive aspects of the Fundamental Theorem of Algebra” o “Los 
aspectos constructivos del teorema fundamental del álgebra” celebrado del 5 al 7 de junio de 
1967 en las instalaciones del Laboratorio de Investigación IBM en la ciudad de Rüschlikon, Suiza. 
El propósito del simposio fue reunir a investigadores expertos en el campo del análisis 
constructivo y numérico y así abrir espacio de discusión sobre el significado del concepto de 
constructividad dentro del contexto de problemas clásicos bien definidos sobre cálculo 
numérico, conocido como el problema de la determinación de los ceros de un polinomio. Los 
editores aclaran que, debido a las obvias limitaciones, únicamente un pequeño grupo de 
investigadores se reunió para el intercambio de puntos de vista sobre el tema. Sin embargo, 
quienes tuvieron la oportunidad de estar presentes estuvieron de acuerdo en que los debates 
fueron informativos y muy estimulantes. Así, el propósito central de esta publicación es que 
contribuya todavía más a la comprensión entre los aspectos teóricos y prácticos del cálculo 
algebraico. Se presentaron 17 reportes de investigación (incluidos los editores). 1) Algoritmo de 
búsqueda de raíces, convergente, rápido y a prueba de fallos. 2) Calculando un cero, por medio 
de interpolación lineal sucesiva. 3) Algunas observaciones sobre el artículo de Dekker. 4) ¿Qué 
es un resolutor satisfactorio de ecuaciones cuadráticas? 5) Polinomios matemáticos y físicos. 6) 
Una forma constructiva sobre la segunda prueba de Gauss del teorema fundamental del álgebra. 
7) Algoritmos uniformemente convergentes para la aproximación simultanea de todos los ceros 
de un polinomio. 8) Sobre la notación de la constructividad. 9) Los bigradientes, las 
determinantes de Henkel y la Tabla Padé. 10) Un algoritmo para un resolutor automático de 
polinomios generales. 11) La determinación numérica de raíces polinómicas múltiples y 
estrechamente adyacentes, utilizando un método de Bernoulli mejorado. (En alemán). 12) 
Procedimientos de búsqueda para resolver ecuaciones polinomiales. 13) Un método para la 
solución automática de ecuaciones algebraicas.14) Funciones de iteración para la solución de 
ecuaciones matriciales polinomiales. 15) Sobre el problema de encontrar los ceros de los 
polinomios. (En alemán). 16) Factorización de polinomios por medio de procedimientos 
generalizados de Newton. 17) El teorema fundamental del álgebra en el análisis recursivo. 15 de 
estos trabajos se presentaron en inglés y dos de ellos en alemán.  Vale la pena mencionar la 
descripción de las ideas de aquella época. En (15), sobre el Teorema fundamental del álgebra el 
autor inicia con la descripción de conjuntos numéricos. Así, 𝑁𝑁 representa al conjunto de los 
“números naturales”. 𝑸𝑸 , representa al campo de los números racionales complejos, el campo 
de números de la forma: 𝑎𝑎 + 𝑏𝑏𝑏𝑏, en donde 𝑎𝑎, 𝑏𝑏 ∈  𝑸𝑸. Además, una secuencia 𝜎𝜎 de los elementos 
de 𝑸𝑸, en términos funcionales se escribe: 𝜎𝜎,𝜎𝜎:𝑁𝑁 → 𝑸𝑸 y tiene la propiedad de ser recursiva, si y 
sólo sí, existen funciones recursivas de la forma: 𝑓𝑓𝑗𝑗 (𝑗𝑗 = 1, 2, 3, 4; 𝑓𝑓𝑗𝑗:𝑁𝑁 → 𝑁𝑁), con la condición 
necesaria de que para todos los 𝑛𝑛 ∈ 𝑁𝑁, tengan la forma:   
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𝜎𝜎(𝑛𝑛) =
𝑓𝑓1(𝑛𝑛)

𝑓𝑓2(𝑛𝑛 + 1)
+

𝑓𝑓3(𝑛𝑛)
𝑓𝑓4(𝑛𝑛 + 1)

 𝑖𝑖 

Así, tal secuencia 𝜎𝜎 es recursivamente convergente sí y sólo sí existe también una 
función recursiva 𝑘𝑘(𝑘𝑘:𝑁𝑁 → 𝑁𝑁), tal que para todos los elementos ℎ, 𝑗𝑗, 𝑛𝑛 ∈ 𝑁𝑁 posean la siguiente 
condición:  

ℎ ≥ 𝑘𝑘(𝑛𝑛)  ∧ 𝑗𝑗 ≥ 𝑘𝑘(𝑛𝑛) ⟹ |𝜎𝜎(ℎ) − 𝜎𝜎(𝑗𝑗)|  <
1

𝑛𝑛 + 1
 

 

La consecuencia inmediata es que un número complejo 𝑐𝑐 es recursivo sí y sólo si existe 
una secuencia recursiva 𝜎𝜎(𝜎𝜎:𝑁𝑁 → 𝑸𝑸) que converga recursivamente con la condición necesaria 
siguiente:  

𝑐𝑐 = lim
𝑛𝑛→∞

𝜎𝜎(𝑛𝑛).  

 

Ahora, si 𝑘𝑘 es una función que satisface la desigualdad escrita anteriormente, para todos 
los elementos ℎ, 𝑗𝑗,𝑛𝑛 ∈ 𝑁𝑁, entonces también lo hará para los elementos ℎ,𝑛𝑛 ∈ 𝑁𝑁.  De esta 
manera continua el autor con la descripción axiomática que justifica la existencia del teorema 
fundamental del álgebra dentro del análisis recursivo. Finalmente, concluye que la recursividad 
en todos sus casos mostrados se puede extender a una generalización en espacios métricos 
recursivos que son totalmente limitados. Dicha generalización representa la analogía 
constructiva del teorema que afirma la continuidad de la función inversa de la función uno a uno 
definida sobre un espacio compacto. Sin embargo, esta prueba es aún (para la época) no 
constructiva. Las pruebas constructivas establecen un teorema fundamental sólido del álgebra 
en análisis recursivo.  

En 1986 la editorial Claredon Press, en Belfast Irlanda del Norte, publica la obra titulada 
“Quantum concepts in space and time” o “Los conceptos cuánticos en el espacio y el tiempo” 
participando como editores R. Penrose y C. J. Isham. Su antecedente data de una publicación 
denominada “Quantum Gravity” o “La gravedad Cuántica” que incluía las ponencias presentadas 
en 1974 en el Laboratorio Rutherford y en 1980 en el Instituto de Matemáticas de Oxford, y 
posteriormente en el Colegio Lincoln en 1984. Por ello, el propósito central de esta obra fue 
examinar nuevamente algunos aspectos fundamentales relativos a la gravedad cuántica, 
generando reflexión sobre la posibilidad de que algunas reglas de la teoría cuántica pudiesen 
modificarse antes de lograr un vínculo con la relatividad general. Es así como centraron su 
esfuerzo de publicación en abordar temas relacionados con los problemas de la física cuántica 
inherentes al espacio y al tiempo (de ahí el título de la obra). La mayor parte de los artículos 
publicados presentan un enfoque ensayístico más que un informe de investigación, lo que 
coincide con otro propósito de esta obra, el explorar fundamentos del tema, más que comunicar 
el desarrollo de técnicas específicas. La publicación también se centró en abordar problemas 
cuánticos no locales, de estado de reducción vectorial y los posibles vínculos con la gravedad. 
Sin embargo, los autores tuvieron toda la libertad de abordar otros tópicos relacionados con 
estos temas. Si bien no se reportan soluciones a la mayoría de los problemas citados, si se 
pueden leer muchísimas aportaciones para el pensamiento cuántico de hace 40 años.  La obra 
contiene 27 contribuciones de destacados investigadores de aquella época: 1) Experimentos 
Einstein-Podolsky-Rosen y los tipos de correlaciones con pares de fotones visibles. 2) Probando 
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la superposición cuántica con neutrones fríos. 3) El principio de superposición en sistemas 
macroscópicos. 4) Fenómenos no locales y el efecto Aharonov-Bohm. 5) Efectos gravitacionales 
sobre sistemas cuánticamente cargados. 6) Reducción de estado continuo. 7) Modelos de 
reducción. 8) Sobre el posible papel de la gravedad en la reducción de una función de onda. 9) 
Gravedad y reducción del estado vectorial. 10) Mecánica estocástica, variables ocultas y 
gravedad. 11) Entropía, incertidumbre y no linealidad. 12) Eventos y procesos en el mundo 
cuántico. 13) La interpretación de los multi mundos de la mecánica cuántica en la cosmología 
cuántica. 14) Tres conexiones entre la interpretación de Everett y el experimento. 15) Las 
amplitudes de transición frente a las probabilidades de transición y una reduplicación del 
espacio-tiempo. 16) El Tiempo Liebniziano, la dinámica Machiana y la gravedad cuántica. 17) El 
espacio-tiempo y la gravedad. 18) Topo-dinámica cuántica en dimensiones superiores. 19) 
Construyendo un universo con cuerdas de bits: un reporte de avance. 20) La función de onda de 
Hawking para el universo. 21) Cuantificación canónica de los agujeros negros. 22) Las 
correlaciones y la causalidad en la teoría de campos cuántica. 23) Auto dualidad y las técnicas 
espinoriales como una aproximación canónica a la gravedad cuántica. 24) Campos cuánticos, 
coordenadas curvolineales y el espacio-tiempo curvado. 25) Acción efectiva para los valores de 
esperanza. 26) Materia cargada desde la perspectiva de la teoría Kaluza-Klein. 27) 
Supergravedad cuántica vía cuantificación canónica.  

En (18), los autores proponen la posibilidad de describir eficazmente la relación de las 
entidades cuánticas, llevándolas al límite continuo, al expandir: 𝑔𝑔 = 𝐺𝐺

𝑎𝑎2
 ;𝐻𝐻 = ℎ𝑎𝑎, conservando 

𝐺𝐺,𝐻𝐻 finitas y   𝑎𝑎, que representa la retícula de expansión, tendiente a cero. Así, proponen que 
la ecuación que describe una simple entidad (partículas y/o campos), con puntos extremos 
𝑅𝑅1,𝑅𝑅2 es la ecuación de Schrödinger para la amplitud 𝜓𝜓(𝑅𝑅1,𝑅𝑅2) de la entidad con puntos 
extremos 𝑅𝑅1,𝑅𝑅2:   

 

−
𝐺𝐺
4
�
∂2𝜓𝜓
∂𝑅𝑅12

+
∂2𝜓𝜓
∂𝑅𝑅22

 � + 𝐻𝐻|𝑅𝑅1 − 𝑅𝑅2|𝜓𝜓 = 𝐸𝐸𝐸𝐸 

 

Junto con una condición de frontera:  

 

∂
∂(𝑅𝑅1 − 𝑅𝑅2)

 𝜓𝜓𝑅𝑅1=𝑅𝑅2 = 0 

 

También proponen la descripción para el caso de 𝑛𝑛 entidades.  

[*] W. Heisenberg. (1949). The physical principles of the quantum Theory. Dover Edition. New 
York.  

 En el número 13 de la revista Journal de Objetos y Objetivos Matemáticos se presentan 
artículos relacionados con lo anterior mencionado. En la sección de objetos matemáticos se 
publica un trabajo basado en el objeto matemático “Teorema Fundamental del Álgebra” 
agregando dos disquisiciones y 6 notas aclaratorias de Joseph Liouville y una demostración 
mediante  Homotopía; así mismo respecto al abandonado tema del cálculo de Lúnulas un autor 
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rescata mediante un algoritmo para el cálculo integral de volúmenes 𝑛𝑛-dimensionales en ℝ𝑛𝑛 de 
hiperlúnulas en la intersección de hiperesferas y un teorema que generaliza el cálculo integral 
de la medida bidimensional de lúnulas ℝ𝑛𝑛 mediante barridos geométricos y cálculo vectorial 
para las  regiones sin subdivisión, con subdivisión en dos partes y con subdivisión en tres.  

La sección objetivos está dedicada a la física cuántica, comenzando con un trabajo que 
axiomatiza el modelo de colapso formal GRW (Ghirardi-Rimini-Weber) de SLE (spontaneous 
localization events) utilizando el trabajo de Zermelo-Fraenkel para establecer familias infinitas 
contables de estados cuánticos discretos (CIFDQS) como una función de elección con una 
simulación en QISKIT; así mismo un autor propone tres modelos matemáticos con I.A. 
probabilística en economía, de empleo y un fractal cuántico con autosimilitud y dimensión 
aplicado a conflicto armado, búsqueda de personas y física. 

El JOOM extiende una cordial invitación a enviar trabajos a nuestro congreso amigo 12th 
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Resumen- El objeto matemático denominado Teorema 
Fundamental del Álgebra ha cobrado mucha importancia en el 
estudio de la matemática básica, debido a que, con él, se asegura 
que todo polinomio de grado n, tendrá exactamente n soluciones, 
garantizando orden y completitud en todos los procesos 
algebraicos relativos a encontrar las raíces de ecuaciones. La 
presente contribución contiene dos disquisiciones y 6 notas 
aclaratorias. En la primera de ellas, abordo el trabajo de Joseph 
Liouville y su demostración a este teorema, con tres notas 
aclaratorias. La segunda disquisición describe una demostración 
basada en el objeto matemático denominado Homotopía, 
inherente a la Topología, con tres notas aclaratorias.  

Palabras Clave- - Campo Complejo, Homotopía, Teorema 
fundamental del álgebra.  

Zusammenfassung- Der Fundamentalsatz der Algebra hat in 
der Grundlagenmathematik große Bedeutung erlangt, da er 
garantiert, dass jedes Polynom n-ten Grades genau n Lösungen 
besitzt. Dies gewährleistet Ordnung und Vollständigkeit in allen 
algebraischen Verfahren zur Nullstellenbestimmung von 
Gleichungen. Dieser Beitrag enthält zwei Abschnitte und sechs 
Erläuterungen. Im ersten Abschnitt behandle ich die Arbeit von 
Joseph Liouville und seinen Beweis dieses Satzes, ergänzt durch 
drei Erläuterungen. Der zweite Abschnitt beschreibt einen 
Beweis, der auf dem in der Topologie verankerten 
mathematischen Konzept der Homotopie basiert, und enthält 
ebenfalls drei Erläuterungen.  

Schlagwörter-. Fundamentalsatz der Algebra, Homotopie, 
Komplexe Körper. 

Резюме- Математический объект, известный как 
Фундаментальная теорема алгебры, приобрел 
значительную важность в изучении фундаментальной 
математики, поскольку он гарантирует, что каждый 
многочлен степени n будет иметь ровно n решений, 
обеспечивая порядок и полноту во всех алгебраических 
процессах, связанных с нахождением корней уравнений. 
Данная статья содержит два раздела обсуждения и шесть 
пояснительных примечаний. В первом разделе обсуждения я 
рассматриваю работу Жозефа Лиувилля и его 
доказательство этой теоремы, а также три пояснительных 
примечания. Во втором разделе обсуждения описывается 
доказательство, основанное на математическом объекте, 
известном как гомотопия, присущем топологии, также с 
тремя пояснительными примечаниями. 

Ключевые слова- гомотопия, Комплексное поле, 
основная теорема алгебры. 

Mathematical Subject Classification: 11A07. 

I. INTRODUCCIÓN 
El Teorema Fundamental del Álgebra (TFA) establece que 

todo polinomio con coeficientes representados por números 
complejos tiene una raíz en este campo ℂ. Esta idea fue 
primeramente propuesta por A. Girard en 1629 y por Renato 
Descartes en 1637, con una formulación un tanto diferente a 
la utilizada en la actualidad [1]. C. McLaurin y Leonard Euler 

realizaron una formulación más precisa proponiendo una 
forma muy parecida a la de nuestros días. La descripción de 
esta propuesta afirma que todo polinomio con coeficientes 
reales se puede descomponer en la forma de un producto de 
factores lineales y cuadráticos que contienen coeficientes 
reales. Una primera prueba a esta afirmación fue realizada por 
J. D’Alembert en 1746, y lo hicieron también Leonard Euler, 
Pierre Laplace, J. L. Lagrange y algunos otros autores durante 
la segunda mitad del siglo 18. Sin embargo, todas las pruebas 
ofrecidas se basaban en la suposición de la existencia de raíces 
ideales del polinomio y a partir de esta idealización se 
pretendía demostrar que al menos una de ellas, era un número 
complejo. Carl Gauss fue quien primeramente realizó la 
demostración sin basarse en el supuesto de que las raíces 
realmente existen. Su método de prueba se basa en esencia, en 
escribir detalladamente el campo de descomposición de un 
polinomio. En un contexto actual, todas las pruebas del TFA 
incluyen de alguna forma las propiedades topológicas de los 
números Reales y Complejos [2]. El papel de la topología 
consiste en considerar el supuesto de que un polinomio de 
grado impar con coeficientes reales tiene una raíz real [3]. Se 
sugiere que el lector tenga nociones de álgebra superior, 
concretamente sobre la fórmula integral de Cauchy y su 
estimación, así como de las nociones básicas de topología 
inherentes al estudio de la homotopía, ya que las 
demostraciones se basan en algunas de estas ideas, que, si 
intento citarlas, la redacción de la idea principal se perdería en 
el discurso, debido a la extensa continuación y enlace de las 
proposiciones necesarias para aclarar la propuesta axiomática. 

II. DISQUISICIONES. 
Disquisición 1 

 Nota 1.- El TFA en el trabajo matemático de Liouville. El 
antecedente inmediato es su teorema implicado en el campo 
complejo ℂ [6]. 
 
 Teorema: 𝑓𝑓(𝑧𝑧) tiene componentes enteros, |𝑓𝑓(𝑧𝑧)| está 
limitado por ∀𝑧𝑧 ∈ ℂ, ∴ 𝑓𝑓(𝑧𝑧) describe un valor constante.       □ 
  

Nota 2. 
 Consecuentemente, si el módulo functional está delimitado en 
toda la extensión del campo ℂ,  𝑓𝑓(𝑧𝑧) representa un polinomio 
de grado 𝑛𝑛 + 1, cuando menos.  
 
 Demostración. Sea 𝑀𝑀 el máximo valor de |𝑓𝑓(𝑧𝑧)| en ℂ0. 
𝑓𝑓(𝑧𝑧) posee componentes enteros, y además |𝑓𝑓(𝑧𝑧)| ≤ 𝑀𝑀 ∀ 𝑧𝑧 ∈
ℂ. En consecuencia, |𝑓𝑓′(𝑧𝑧)| < 𝑀𝑀

𝑟𝑟
 , (Por el Estimado de Cauchy 

[6]). Además, como 𝑓𝑓(𝑧𝑧) es entero, se establecen tres 
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consecuencias: i) 𝑟𝑟 → ∞,  ii) |𝑓𝑓′(𝑧𝑧)| = 0,  iii) 𝑓𝑓′(𝑧𝑧) = 0. Por 
lo tanto 𝑓𝑓(𝑧𝑧) es constante. Entonces: 𝑓𝑓𝑛𝑛(𝑧𝑧) ≤ 𝑀𝑀 ∀𝑧𝑧 ∈ ℂ ⟶
�𝑓𝑓(𝑛𝑛+1)(𝑧𝑧)� ≤ 𝑀𝑀

𝑟𝑟
 (Por el axioma 9 de Peano y el Estimado de 

Cauchy). Se establecen tres consecuencias: i) 𝑟𝑟 → ∞,  ii) 
𝑓𝑓(𝑛𝑛+1)(𝑧𝑧) = 0, iii) 𝑓𝑓𝑛𝑛(𝑧𝑧) es un valor constante. Por lo tanto, 
𝑓𝑓(𝑧𝑧) describe a un polinomio de grado al menos 𝑛𝑛 + 1 (Por el 
Teorema de antidiferenciación).                                              ∎ 
 
 Nota 3.- El lugar geométrico inherente al Estimado de 
Cauchy es un círculo de radio 𝑟𝑟 y centrado en el origen. Es 
interesante comentar esta propuesta, conocida como el 
Estimado de Cauchy. Además, utilizo el trabajo original de 
Giuseppe Peano: Artihmetices Principia, Axioma 9. 
 Teorema: Sea 𝒟𝒟 un dominio simplemente conectado. 
Además, 𝑓𝑓(𝑧𝑧) representa una función analítica en 𝒟𝒟 ⊃ 𝐶𝐶0 
(círculo de radio 𝑟𝑟0 y centrado en 𝑧𝑧0 [6]. Entonces, 
�𝑓𝑓(𝑛𝑛)(𝑧𝑧0)� ≤ 𝑛𝑛!𝑀𝑀

𝑟𝑟0
𝑛𝑛  ,∀𝑧𝑧 ∈ ℂ0                                                      □ 

 
 Demostración. □ 
 �𝑓𝑓(𝑛𝑛)(𝑧𝑧0� ≤ �(𝑛𝑛!)(2𝜋𝜋𝜋𝜋−1)∫ (𝑓𝑓(𝑧𝑧))((𝑧𝑧 − 𝑧𝑧0)𝑛𝑛+1)−1□

ℂ0
𝑑𝑑𝑑𝑑� ≤

(𝑀𝑀𝑀𝑀!)(2𝜋𝜋)−1 ≤ �∫ (𝑑𝑑𝑑𝑑)((𝑧𝑧 − 𝑧𝑧0)𝑛𝑛+1)𝑛𝑛−1□
ℂ0

�. (Por las 
propiedades de Integración). Además, al expandir  sobre ℂ0, se 
tiene : i) = 𝑧𝑧0 + 𝑟𝑟0𝑒𝑒𝑖𝑖𝑖𝑖  ; ii) 𝑑𝑑𝑑𝑑 = 𝑖𝑖𝑖𝑖0𝑒𝑒𝑖𝑖𝑖𝑖. 
Reescribo: 
 
�∫ (𝑑𝑑𝑑𝑑)((𝑧𝑧 − 𝑧𝑧0)𝑛𝑛+1)−1□
ℂ0

� = �∫ 𝑟𝑟0−𝑛𝑛𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖  𝑑𝑑𝑑𝑑
2𝜋𝜋
ℂ0

� = 2𝜋𝜋𝑟𝑟0−𝑛𝑛.  
 
(Por cambio de representación rectangular a representación 
polar y por Propiedades de Integración trigonométrica). 
  
 Por lo tanto:  
                         |𝑓𝑓𝑛𝑛(𝑧𝑧0)| =≤ (𝑀𝑀𝑀𝑀!)(𝑟𝑟0𝑛𝑛)−1                            ∎ 
 
 

Disquisición 2 
Nota 4.- El TFA en el contexto topológico. La homotopía 

como objeto matemático describe las propiedades invariantes 
y las propiedades de deformación dentro de un grupo 
fundamental. Sean 𝑓𝑓,𝑔𝑔 dos funciones continuas. Si existen 
una familia de funciones denotadas por 𝑀𝑀(𝑥𝑥, 𝑞𝑞), tal que 
justifiquen la transformación gradual de la función 𝑓𝑓 en la 
función 𝑔𝑔, con la condición de que 𝑞𝑞 varie dentro del intervalo 
cerrado [0,1], con (𝑀𝑀(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥)  ∧ 𝑀𝑀(𝑥𝑥, 1) = 𝑔𝑔(𝑥𝑥)), 
entonces 𝑓𝑓,𝑔𝑔 son homotópicas [4].  

 
TFA.- Sea 𝑃𝑃 un polinomio no constante.  0 ∈ ∀ 𝑃𝑃 ∈ ℂ  □ 
 
Nota 5.- Al expandir la función polinomial: 𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑛𝑛 +

𝑝𝑝𝑛𝑛−1𝑧𝑧𝑛𝑛−1 + 𝑝𝑝1𝑧𝑧 + 𝑝𝑝0 , con las condiciones: i)  𝑛𝑛 > 0; ii) 
𝑝𝑝𝑛𝑛−1, … , 𝑝𝑝1, 𝑝𝑝0  ∈ ℂ ∴ ∃ 𝑧𝑧0  ∈ ℂ | 𝑓𝑓(𝑧𝑧0) = 0.   [5]. 

 
Demostración: ∄ 𝑓𝑓(𝑧𝑧0) = 0 → 𝑧𝑧 ↦ 𝑓𝑓(𝑧𝑧) generaría 

𝑓𝑓:ℂ ⟶ ℂ − 0 (Por Prop. Asociativa de la Adición en ℂ); al 
considerar la serie: 𝜎𝜎 = |𝑝𝑝0| + |𝑝𝑝1| + ⋯+  |𝑝𝑝𝑛𝑛−1| + 1 y 
además la relación: 𝑧𝑧 ∈ 𝑆𝑆1 , con 𝑆𝑆 como la representación de 
un espacio topológico, y por la Propiedad Asociativa de la 
multiplicación y la Propiedad Asociativa de la Adición en ℂ, 
tenemos: |𝑓𝑓(𝜎𝜎𝜎𝜎 − 𝜎𝜎𝑛𝑛𝑧𝑧𝑛𝑛| ≤ |𝑝𝑝0 + 𝜎𝜎|𝑝𝑝1| + ⋯+
𝜎𝜎𝑛𝑛−1|𝑝𝑝𝑛𝑛−1| ≤ 𝜎𝜎𝑛𝑛−1(|𝑝𝑝0| + |𝑝𝑝1|+ . . . +|𝑝𝑝𝑛𝑛−1|) < 𝜎𝜎𝑛𝑛| =

 |𝜎𝜎𝑛𝑛𝑧𝑧𝑛𝑛|  [5], por contradicción al Teorema: [𝒮𝒮1,𝒮𝒮1]  ⟶ ℤ, 
basado en [𝑓𝑓] ⟼ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑓𝑓)                                                     ∎ 

 
Nota 6.- Las propiedades topológicas hacen que 𝑓𝑓(𝜎𝜎𝜎𝜎) se 

localice en interior de un círculo topológico de centro 𝜎𝜎𝑛𝑛𝑧𝑧𝑛𝑛 y 
con radio |𝜎𝜎𝑛𝑛𝑧𝑧𝑛𝑛| Es de notar que el segmento que une a estos 
dos objetos matemáticos no contiene al punto origen. La 
consecuencia inmediata es la generación de la Homotopia: 
𝐻𝐻:𝒮𝒮1 𝑋𝑋 𝐼𝐼 ⟶ ℂ − 0, con aplicación inicial: 𝑧𝑧 → 𝑓𝑓(𝜎𝜎𝜎𝜎), que es 
nulhomotópica y aplicación final: 𝑧𝑧 → 𝜎𝜎𝑛𝑛𝑧𝑧𝑛𝑛, también 
nulhomotópica. Entonces, al retraerla topológicamente, 
tenemos: 𝑟𝑟:ℂ − 0 → 𝒮𝒮1, con la condición: 𝑟𝑟(𝑧𝑧) = 𝑧𝑧

|𝑧𝑧|
 . De este 

modo, se obtiene 𝒮𝒮1 →  𝒮𝒮1 y en consecuencia 𝑧𝑧 → 𝑧𝑧𝑛𝑛, lo que 
hace contradecir el teorema mencionado y relativo al mapeo 
de funciones en superficies topológicas.  

III. CONCLUSIONES. 
El TFA ha sido una propuesta muy valorada para el 

lenguaje matemático contemporáneo. Las demostraciones a 
esta propuesta han enriquecido y ampliado las ideas 
matemáticas a lo largo del tiempo. Esta breve aportación la 
centré en elaborar dos disquisiciones y 6 notas basadas en el 
conocimiento del campo de números complejos cuyo estudio 
permite la solución de ecuaciones en todas sus formas, cuya 
ventaja es su uso en otras ramas del conocimiento, como la 
ingeniería y la física; y de la topología cuya ventaja principal 
radica en la profunda generalización y abstracción, al trabajar 
ideas relacionadas con el concepto de cercanía, sin el requisito 
del concepto de distancia métrica, abarcando así, un conjunto 
mayor de espacios topológicos. 
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Resumen- En este trabajo se introduce el Teorema de las 
hiperlúnulas, una formulación generalizada para el cálculo 
integral de volúmenes 𝑛𝑛-dimensionales en ℝ𝒏𝒏. Las hiperlúnulas 
se entienden como regiones delimitadas por casquetes generados 
en la intersección de hiperesferas, lo que amplía de manera 
natural la noción clásica de lúnula en el plano. El método se 
construye a partir de la extensión de mis resultados previos en 
ℝ𝟐𝟐, donde logré formular un esquema unificado independiente 
de restricciones sobre la forma de los arcos. En esta versión 
general, la propuesta se fundamenta en técnicas de cálculo 
vectorial, cambios de variable en integrales múltiples y el uso 
sistemático de coordenadas esféricas e hiperesféricas. El 
resultado establece un marco sistemático y consistente para 
abordar configuraciones geométricas de cualquier dimensión, 
consolidando así una herramienta integral aplicable en contextos 
de geometría integral y análisis multivariable. 

Palabras Clave- hiperlúnula, medidas 𝑛𝑛-dimensionales, 
geometría integral, hiperesferas, teorema. 

Abstract- This paper introduces the Theorem of Hyperlunulae, 
a generalized formulation for the integral calculation of 𝑛𝑛-
dimensional volumes in ℝ𝒏𝒏. Hyperlunulae are defined as regions 
delimited by spherical caps arising from the intersection of 
hyperspheres, naturally extending the classical notion of planar 
lunes. The method builds upon my previous results in ℝ𝟐𝟐, where 
a unified framework was established independently of arc 
restrictions. The general formulation presented here relies on 
vector calculus, multivariable change of variables, and the 
systematic use of spherical and hyperspherical coordinates. The 
result provides a consistent and systematic approach to 
geometric configurations in arbitrary dimensions, consolidating 
a tool applicable to problems in integral geometry and 
multivariable analysis. 

Keywords- hyperlunules, 𝑛𝑛-dimensional measures, integral 
geometry, hyperspheres, theorem. 

Mathematical Subject Classification: 51M25, 26B15, 
53A07. 

I.  INTRODUCCIÓN 
    El estudio de las lúnulas ha sido, desde la Antigüedad, un 
tema de interés tanto geométrico como analítico. En un trabajo 
previo se presenta un teorema general para el cálculo de áreas 
de lúnulas en ℝ𝟐𝟐, bajo la restricción de que el arco exterior 
correspondiera a una semicircunferencia [1]. Posteriormente, 
se desarrolla una extensión más general —realizada en 
paralelo a la presente investigación— en la que el método no 
depende de condiciones particulares sobre el arco, lo que 
permite obtener una formulación unificada para el cálculo de 
la medida bidimensional de lúnulas. 
     El presente artículo constituye la continuación natural de 
esa línea de investigación. El objetivo es trasladar las ideas 
previamente desarrolladas hacia espacios de mayor 

dimensión, con énfasis en las regiones generadas por 
intersecciones de esferas en ℝ𝒏𝒏.  
     Para ello, se introduce y demuestra el Teorema de las 
hiperlúnulas, el cual establece un procedimiento sistemático 
para calcular volúmenes 𝑛𝑛-dimensionales mediante técnicas 
de cálculo integral, cálculo vectorial y transformaciones de 
coordenadas sustentadas en el jacobiano correspondiente. 
     De esta manera, se consolida una progresión conceptual 
que parte de las lúnulas clásicas en dos dimensiones y alcanza 
su extensión a espacios de dimensión arbitraria, ofreciendo un 
marco teórico general con aplicaciones potenciales en 
geometría integral y análisis multivariable 

II.  OBSERVACIONES SOBRE EL MARCO GEOMÉTRICO DE LA 
HIPERLÚNULA 

     El término lúnula aparece históricamente en la geometría 
clásica como una figura plana delimitada por arcos de 
circunferencia, estudiada desde la antigüedad en el contexto 
euclidiano. No obstante, la evolución de la geometría a partir 
del siglo XIX permitió extender de manera sistemática 
conceptos geométricos clásicos a espacios de dimensión 
arbitraria y, más generalmente, a variedades diferenciables 
dotadas de una estructura métrica. 
     En particular, la geometría riemanniana proporciona un 
marco natural para la generalización de nociones geométricas 
elementales, al permitir definir distancia, longitud de curvas y 
volumen mediante una métrica 𝑔𝑔, incluso en ausencia de una 
estructura euclidiana plana. [5] 
     Dentro de este contexto, construcciones originalmente 
bidimensionales pueden reinterpretarse y extenderse a 
espacios de mayor dimensión, manteniendo su intuición 
geométrica fundamental. 
     El prefijo hiper se utiliza aquí precisamente para señalar 
esta extensión estructural y dimensional del concepto clásico 
de lúnula. La hiperlúnula no se concibe como una mera figura 
plana, sino como una generalización geométrica definida en 
ℝ𝑛𝑛—y, de manera más general, en variedades riemannianas— 
donde la noción de arco y región se reemplaza por 
intersecciones y subconjuntos determinados por estructuras 
métricas de dimensión superior. 
En este sentido, el uso del término hiperlúnula refleja tanto la 
raíz histórica del concepto como su formulación moderna, 
situando al objeto dentro del lenguaje contemporáneo de la 
geometría sin perder su conexión con la tradición clásica. 
 

mailto:ornelas.tapia.jonathan@gmail.com
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III.  DEFINICIONES, PROPIEDADES Y TEOREMAS AUXILIARES. 
 
     A continuación, se presentan las definiciones, propiedades 
y teoremas auxiliares que constituyen el marco preliminar de 
este trabajo, proporcionando las herramientas necesarias para 
la formulación y demostración del teorema principal, y 
garantizando tanto su consistencia interna como la unicidad de 
su enunciado. 
 
     Definición (Def.) 1.- Matriz Jacobiana [2]: 
Sea 𝐹𝐹: 𝑈𝑈 ⊆ ℝ𝑛𝑛 → ℝ𝑛𝑛 una transformación diferenciable de 
clase 𝐶𝐶1, con 

𝐹𝐹(𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑛𝑛) = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) 
 
     La matriz jacobiana de 𝐹𝐹 se define como: 
 

𝐽𝐽𝐹𝐹(𝑢𝑢) = �∂𝑥𝑥𝑖𝑖/ ∂𝑢𝑢𝑗𝑗�𝑖𝑖,𝑗𝑗=1
𝑛𝑛                          (1) 

 
     El determinante de esta matriz se denomina determinante 
jacobiano y se denota por: 

∂(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)
∂(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛) = det�𝐽𝐽𝐹𝐹(𝑢𝑢)�                        (2) 

 
     Def. 2.- Coordenadas hiperesféricas [3]: 
Todo punto (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝜖𝜖 ℝ𝑛𝑛 puede expresarse mediante un 
radio 𝜌𝜌 ≥ 0 y ángulos 𝜙𝜙1, … ,𝜙𝜙𝑛𝑛−2 𝜖𝜖 [0,𝜋𝜋], 𝜃𝜃 𝜖𝜖 [0,2𝜋𝜋] según: 
 

𝑥𝑥𝑗𝑗 = ρ�� sinϕ𝑘𝑘

𝑗𝑗−1

𝑘𝑘=1

� cosϕ𝑗𝑗 ,  1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 − 2       (3) 

 

𝑥𝑥𝑛𝑛−1 = ρ�� sinϕ𝑘𝑘

𝑛𝑛−2

𝑘𝑘=1

� cos θ                   (4) 

 

𝑥𝑥𝑛𝑛 = ρ�� sinϕ𝑘𝑘

𝑛𝑛−2

𝑘𝑘=1

� sin𝜃𝜃                        (5) 

      
     Esta parametrización corresponde a la descripción estándar 
de la esfera unitaria 𝑆𝑆𝑛𝑛−1 ⊂ ℝ2, construida inductivamente a 
partir de proyecciones sucesivas en subesferas de menor 
dimensión. 
 
     Def. 3.- Jacobiano en coordenadas hiperesféricas [3]: 
El determinante jacobiano correspondiente al cambio de 
coordenadas hiperesféricas en ℝ𝑛𝑛, con parámetros ≥ 0 y 
ángulos 𝜙𝜙1, … ,𝜙𝜙𝑛𝑛−2 𝜖𝜖 [0,𝜋𝜋], 𝜃𝜃 𝜖𝜖 [0,2𝜋𝜋] está dado por: 
 

𝐽𝐽(ρ,ϕ1, … ,ϕ𝑛𝑛−2, θ) = ρ𝑛𝑛−1�(sin𝜙𝜙𝑘𝑘) 𝑛𝑛−1−𝑘𝑘
𝑛𝑛−2

𝑘𝑘=1

     (6) 

 
     De esta manera, el elemento de volumen se escribe como: 
 

𝑑𝑑𝑑𝑑 = ρ𝑛𝑛−1�(sin𝜙𝜙𝑘𝑘) 𝑛𝑛−1−𝑘𝑘
𝑛𝑛−2

𝑘𝑘=1

 𝑑𝑑ρ 𝑑𝑑ϕ1 ⋯𝑑𝑑ϕ𝑛𝑛−2 𝑑𝑑𝑑𝑑   (7) 

 
     Def. 4.- Condición de intersección de dos esferas en ℝ𝑛𝑛 
[4]: 

Sean dos esferas 𝑆𝑆(𝐶𝐶1, 𝑟𝑟1), 𝑆𝑆(𝐶𝐶2, 𝑟𝑟2) en ℝ𝑛𝑛con centros 
𝐶𝐶1,𝐶𝐶2𝜖𝜖 ℝ𝑛𝑛 y radios 𝑟𝑟1, 𝑟𝑟2 > 0. Denotemos por 𝑑𝑑 = ‖𝐶𝐶1,𝐶𝐶2‖ 
la distancia entre sus centros. La intersección de las esferas 
es no vacía y de dimensión 𝑛𝑛 si y solo si se cumple la 
desigualdad 
 

|𝑟𝑟1 − 𝑟𝑟2| < 𝑑𝑑 < 𝑟𝑟1 + 𝑟𝑟2                              (8) 
 
     Teorema (Teo.) 1.- Cambio de variable en integrales 
múltiples [2]: 
     Sea 𝑈𝑈 ⊆ ℝ𝑛𝑛 un conjunto abierto y 𝐹𝐹 ∶  𝑈𝑈 → ℝ𝑛𝑛 una 
transformación de clase 𝐶𝐶1, inyectiva casi en todas partes, 
cuyo determinante jacobiano es continuo y no nulo en 𝑈𝑈. 
     Si 𝑓𝑓:𝐹𝐹(𝑈𝑈) → ℝ es integrable, entonces se cumple la 
siguiente igualdad: 
 

� 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)
𝐹𝐹(𝑈𝑈)

 𝑑𝑑𝑥𝑥1 ⋯𝑑𝑑𝑥𝑥𝑛𝑛  

=  �𝑓𝑓�𝐹𝐹(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛)�
𝑈𝑈

 �det
∂(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)
∂(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛)�  𝑑𝑑𝑢𝑢1 ⋯𝑑𝑑𝑢𝑢𝑛𝑛          (9) 

IV.  DEFINICIÓN DE LA HIPERLÚNULA EN ℝ𝑛𝑛  
 

     Def. 5.- Región Hiperlúnular en ℝ𝑛𝑛: 
Sean 𝑆𝑆(𝑂𝑂1, 𝑟𝑟1),  𝑆𝑆(𝑂𝑂2, 𝑟𝑟2) dos esferas en ℝ𝑛𝑛 con centros 𝑂𝑂 y 
radios 𝑟𝑟 tal que cumplan con la condición de intersección 
(Definición 4). 
    La hiperlúnula asociada a 𝑆𝑆(𝑂𝑂1, 𝑟𝑟1) respecto a 𝑆𝑆(𝑂𝑂2, 𝑟𝑟2) 
se define como la región 

 𝛺𝛺(𝑂𝑂1 ∣∣ 𝑂𝑂2 ) = {𝜔𝜔 ∈ 𝐵𝐵(𝑂𝑂1, 𝑟𝑟1): ‖𝜔𝜔 − 𝑂𝑂2‖ ≥ 𝑟𝑟2}, 
 
donde 𝐵𝐵(𝑂𝑂, 𝑟𝑟) = {𝜔𝜔 ∈ ℝ𝑛𝑛: ‖𝜔𝜔 − 𝑂𝑂‖ ≤ 𝑟𝑟},  a lo que 
denominaremos la bola sólida de centro 𝐶𝐶1 y radio 𝑟𝑟1. 
     Sea, la porción de la hiperesfera 𝑆𝑆(𝑂𝑂1, 𝑟𝑟1) delimitada por el 
casquete generado por la intersección con 𝑆𝑆(𝑂𝑂2, 𝑟𝑟2). Desde el 
punto de vista geométrico, la región hiperlúnular puede 
interpretarse como una porción de hiperesfera sólida privada 
de un subconjunto inducido por la intersección, lo que da lugar 
a una configuración con contribuciones de curvatura efectiva 
negativa asociadas al casquete excluido [11]. En la Figura 2 se 
observa la configuración correspondiente a una región 
hiperlúnular en ℝ3. 

V.  TEOREMA  

     Sea 𝛺𝛺(𝑂𝑂1 ∣∣ 𝑂𝑂2 ) la región correspondiente a la hiperlúnula 
delimitada por dos hiperesferas de centros 𝑂𝑂1,𝑂𝑂2 y radios 
𝑟𝑟1, 𝑟𝑟2, respectivamente. 
El volumen 𝑛𝑛 −dimensional de la región Hiperlúnular Ω se 
obtiene a través de la integral múltiple:  
 

𝑉𝑉𝐿𝐿
(𝑛𝑛) = �𝑑𝑑Ψ

Ω
                                    (10) 

 

VI.  DEMOSTRACIÓN  

     Para iniciar, expongo el cambio clásico de coordenadas 
en ℝ𝟐𝟐 , que constituye el punto de partida esencial del presente 
trabajo y se encuentra descrito en la Definición 2. 
 

𝜔𝜔1 = 𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓1 ,𝜔𝜔2 = 𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓1                   (11) 
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     Para evitar ambigüedades en la notación, aclaro que con 𝜔𝜔 
designo de manera general a las coordenadas cartesianas 
(𝜔𝜔1, . . . ,𝜔𝜔𝑛𝑛), mientras que con 𝜓𝜓 represento a los ángulos 
introducidos en el proceso de parametrización, 
independientemente de su subíndice particular. La única 
variable que permanece invariable en todos los casos es 𝜌𝜌, 
entendida como la magnitud radial asociada a la distancia al 
origen.  
     Con las convenciones anteriores, paso ahora a mostrar la 
formulación explícita del cambio de coordenadas en los 
siguientes entornos. En primer lugar, presento el caso 
tridimensional ℝ3, donde las coordenadas se expresan en 
términos de la magnitud radial 𝜌𝜌 y dos ángulos 𝜓𝜓, lo que 
corresponde al sistema esférico clásico.  
 

𝜔𝜔1 = 𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓1 ,𝜔𝜔2 = 𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓2 𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓1 , 
𝜔𝜔3 = 𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓2                                     (12) 

 
     Posteriormente, extiendo este mismo esquema al espacio 
ℝ4, en el cual interviene un ángulo adicional que multiplica a 
los factores trigonométricos previos, dando lugar a la 
parametrización hiperesférica. 
 
𝜔𝜔1 = 𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓3 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓1 ,𝜔𝜔2 = 𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓3 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓1  

𝜔𝜔3 = 𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓3 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓2 ,𝜔𝜔4 = 𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓3                   (13) 
  
     Se observa un patrón consistente en el desarrollo de cada 
variable al pasar de un entorno ℝ𝒏𝒏−𝟏𝟏a un  ℝ𝒏𝒏. A partir de este 
análisis, he formulado una variante propia para el cambio de 
variable, la cual mantiene equivalencia con la parametrización 
hiperesférica estándar de la Definición 2, pero cuya notación 
resulta más clara y sencilla de interpretar en el marco de este 
trabajo. En consecuencia, presento a continuación la expresión 
generalizada que utilizaré en el desarrollo del teorema.  
 
     Def. 6.- Coordenadas hiperesféricas generalizadas: 
Todo punto (𝜔𝜔1, … ,𝜔𝜔𝑛𝑛)𝜖𝜖 ℝ𝑛𝑛 puede expresarse mediante un 
radio 𝜌𝜌 ≥ 0 y ángulos 𝜓𝜓1, … ,𝜓𝜓𝑛𝑛−2 𝜖𝜖 [0,2𝜋𝜋] según: 
 

𝜔𝜔𝑖𝑖 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝜌𝜌 ��𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓𝑘𝑘+1

𝑛𝑛−2

𝑘𝑘=1

�  𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓1 , 𝑖𝑖 = 1

𝜌𝜌 ��𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓𝑘𝑘+1

𝑛𝑛−2

𝑘𝑘=1

�   𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓1 , 𝑖𝑖 = 2

𝜌𝜌  ��𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓𝑘𝑘+2

𝑛𝑛−3

𝑘𝑘=1

� 𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓𝑛𝑛−2 ,  𝑖𝑖 ∈ ℤ+,  𝑖𝑖 > 2,  𝑖𝑖 ≠ 𝑛𝑛

𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓𝑛𝑛−1 ; 𝑖𝑖 ∈ ℤ+,  𝑖𝑖 > 2,  𝑖𝑖 = 𝑛𝑛

            (14) 

      
     Esta parametrización corresponde a la descripción estándar 
de la esfera unitaria 𝑆𝑆𝑛𝑛−1 ⊂ ℝ2, construida inductivamente a 
partir de proyecciones sucesivas en subesferas de menor 
dimensión. [3] 
     Para sustentar el cambio de coordenadas en el entorno  ℝ𝟒𝟒, 
comienzo mostrando el cálculo explícito del determinante 
jacobiano asociado. 
  

𝐽𝐽�𝜌𝜌,𝜓𝜓1 ,𝜓𝜓2 ,𝜓𝜓3 � =
𝜕𝜕(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3,𝜔𝜔4)
𝜕𝜕�𝜌𝜌,𝜓𝜓1 ,𝜓𝜓2 ,𝜓𝜓3 �

=                                  

 

�

 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓3 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓1 −𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓3 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓1 𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓3 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓1 𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓3 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓1 
 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓3 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓1 𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓3 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓1 𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓3 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓1 𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓3 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓1 

𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓3 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓2 0 −𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓3 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓2 𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓3 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓2 
𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓3 0 0 −𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓3 

� 

    
  (15) 

     A partir de la matriz construida con las derivadas parciales 
de las transformaciones hiperesféricas, se obtiene el factor de 
escala que permite convertir integrales en coordenadas 
cartesianas a integrales en coordenadas hiperesféricas. 
 

�
𝜕𝜕(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤)

𝜕𝜕�𝜌𝜌,𝜓𝜓1 ,𝜓𝜓2 ,𝜓𝜓3 �
� = 𝜌𝜌3 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜓𝜓1 𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓2                      (16) 

      
     Este procedimiento garantiza que la medida diferencial 
refleje correctamente la geometría del espacio de cuatro 
dimensiones, constituyendo un paso fundamental para la 
generalización posterior. Una vez obtenido el resultado en ℝ𝟒𝟒, 
conviene comparar el factor jacobiano con los casos de menor 
dimensión.  
     En  ℝ𝟐𝟐el determinante se reduce a: 
 

𝐽𝐽(𝜌𝜌,𝜓𝜓1 ) = 𝜌𝜌                                     (17) 
 

     Mientras que en  ℝ𝟑𝟑 se obtiene: 
 

𝐽𝐽(𝜌𝜌,𝜓𝜓1 ,𝜓𝜓2 ) = 𝜌𝜌2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓1                           (18) 
 

     La expresión hallada en  ℝ𝟒𝟒 (18) muestra con claridad que 
existe un patrón recurrente: en cada dimensión aparece la 
potencia correspondiente de la variable radial, acompañada de 
productos de senos con exponentes decrecientes. Esta 
consistencia refuerza la validez del método y evidencia que el 
proceso no es arbitrario, sino que responde a una estructura 
general. 
     De la comparación anterior se desprende una expresión 
general para el determinante jacobiano en  ℝ𝒏𝒏. Este resultado 
se fundamenta en la Definición 3, de la cual parto para 
formular la generalización, adaptándola además a la notación 
propia que adopto en este trabajo. Así, el factor de escala 
queda dado por la potencia 𝜌𝜌𝑛𝑛−1, multiplicada por un producto 
de senos de los ángulos introducidos en la parametrización. De 
este modo, se obtiene un jacobiano único y sistemático, 
aplicable a cualquier dimensión, lo cual permite consolidar la 
formulación integral de los volúmenes 𝑛𝑛 −dimensionales de 
hiperlúnulas. 

𝐽𝐽�𝜌𝜌,𝜓𝜓1 ,𝜓𝜓2 , . . . ,𝜓𝜓𝑛𝑛 � = ρ 𝑛𝑛−1 ��sin𝜓𝜓𝑘𝑘�
 𝑛𝑛−𝑘𝑘−1

𝑛𝑛−2

𝑘𝑘=1
   □       (19) 

 
     Con base en la Definición 3 y 5, es posible establecer ahora 
el elemento diferencial de volumen en  ℝ𝒏𝒏.  
 
     Def. 7.- Jacobiano único para volúmenes 
𝑛𝑛 −dimensionales de hiperlúnulas: 
El determinante jacobiano correspondiente al cambio de 
coordenadas hiperesféricas en  ℝ𝒏𝒏 con base en la definición 5, 
está dado por: 𝐽𝐽�𝜌𝜌,𝜓𝜓1 ,𝜓𝜓2 ,𝜓𝜓3 , . . . ,𝜓𝜓𝑛𝑛� = 𝜕𝜕(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3,...,𝜔𝜔𝑛𝑛)

𝜕𝜕�𝜌𝜌,𝜓𝜓1 ,𝜓𝜓2 ,𝜓𝜓3  ,...,𝜓𝜓𝑛𝑛 �
 

 
     De esta manera el elemento de volumen 𝑛𝑛 −dimensional se 
escribe como: 
 

𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑛𝑛−1�(𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓𝑘𝑘) 𝑛𝑛−𝑘𝑘−1
𝑛𝑛−2

𝑘𝑘=1

 𝑑𝑑𝑑𝑑 𝑑𝑑𝜓𝜓2 ⋯𝑑𝑑𝜓𝜓𝑛𝑛−2𝑑𝑑𝜓𝜓1  □ (20) 

 
     Finalmente, es necesario señalar que la validez de la región 
Ω depende de que las hiperesferas consideradas en ℝ𝑛𝑛 
satisfagan las condiciones establecidas en la Definición 5. 
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     Con todos los elementos previamente establecidos, es 
posible formular la integral que proporciona el volumen 𝑛𝑛-
dimensional de la hiperlúnula delimitada por hiperesferas 
en ℝ𝒏𝒏. La expresión queda dada por: 
 

𝑉𝑉𝐿𝐿
(𝑛𝑛) = �. . .�  𝐽𝐽�𝜌𝜌,𝜓𝜓1 ,𝜓𝜓2 , . . . ,𝜓𝜓𝑛𝑛 �

Ω(C1|C2)
𝑑𝑑ρ 𝑑𝑑𝜓𝜓2⋯𝑑𝑑𝜓𝜓𝑛𝑛−2𝑑𝑑𝜓𝜓1    (21) 

 
     De este modo, la expresión puede presentarse en forma 
funcional reducida como: 
 

𝑉𝑉𝐿𝐿
(𝑛𝑛) = �𝑑𝑑Ψ

Ω
     ∎ 

 
     Donde 𝑉𝑉𝐿𝐿

(𝑛𝑛) corresponde al volumen 𝑛𝑛-dimensional de la 
hiperlúnula.  
     De esta manera, la construcción se encuentra completa: la 
integral general obtenida constituye una formulación única, 
consistente y aplicable a cualquier dimensión. Con ello, queda 
demostrado el Teorema de las hiperlúnulas, estableciendo un 
marco integral definitivo para el cálculo de volúmenes 𝑛𝑛-
dimensionales generados por intersecciones de hiperesferas.        
     Con el fin de aportar una intuición visual acerca del objeto 
en estudio, en la Figura 3, 4 y 5 se presenta una representación 
gráfica de una hiperlúnula en  ℝ𝒏𝒏. Si bien no corresponde a una 
construcción geométrica estricta, la ilustración permite sugerir 
la estructura espacial que caracteriza a este tipo de regiones. 
     El resultado se fundamenta en la extensión de las 
construcciones bidimensionales hacia espacios de dimensión 
arbitraria, utilizando herramientas de cálculo vectorial y 
cambios de variable en integrales múltiples mediante 
coordenadas esféricas e hiperesféricas. Este procedimiento no 
solo garantiza la existencia y unicidad de la solución, sino que 
también asegura la consistencia interna del método. Al no 
depender de la forma específica de los casquetes que delimitan 
las hiperlúnulas, la formulación adquiere un carácter 
plenamente general, capaz de abarcar en un mismo marco 
tanto los casos particulares ya conocidos como su proyección 
a dimensiones superiores. 

VII.  ESCOLIO (INTERPRETACIÓN GEOMÉTRICA Y DEFINICIÓN 
TEXTUAL DE LA HIPERLÚNULA). 

     En el estudio de las configuraciones geométricas generadas 
por la intersección de dos esferas en ℝ𝑛𝑛 (véase la Figura 1 para 
una representación del caso tridimensional), la atención suele 
centrarse en la región común delimitada por ambas. Sin 
embargo, dicha región no constituye el objeto de interés en el 
presente trabajo.  
     En efecto, cada esfera determina, a partir de la otra, una 
porción propia delimitada por el casquete inducido por la 
intersección. Estas porciones, que constituyen subconjuntos 
volumétricos diferenciados y no coincidentes con la región de 
intersección, serán denominadas en lo sucesivo hiperlúnulas o 
regiones hiperlúnulares. 
     La introducción de este concepto resulta esencial para 
extender los métodos de cálculo integral previamente aplicados 
a lúnulas planas a un marco de dimensión arbitraria, 
permitiendo una formulación geométrica y analítica coherente 
en ℝ𝑛𝑛. 
     Desde una perspectiva geométrica más amplia, la 
hiperlúnula puede entenderse como una región cuya estructura 
resulta de una hiperesfera dotada de un “hueco” inducido por 

la intersección, lo que introduce una contribución de curvatura 
negativa asociada a la porción excluida. Esta característica la 
vincula naturalmente con consideraciones propias de la 
geometría conformal [10], en la medida en que la eliminación 
del casquete altera la estructura angular local sin depender de 
una métrica específica. En este sentido, la hiperlúnula 
constituye un objeto geométrico híbrido cuya interpretación 
trasciende el marco puramente euclidiano, resultando 
compatible con enfoques conformes en dimensión arbitraria. 
  

 
Fig. 1 Representación en ℝ3de dos esferas intersectándose. La intersección 

genera dos regiones hiperlúnulares, una asociada a cada esfera. 
 

 
Fig. 2 Visualización en ℝ3de una hiperlúnula individual. 

 

 
Fig. 3 Representación gráfica de una hiperlúnula en  ℝ𝒏𝒏. 
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Fig. 4 Representación gráfica del esqueleto de una hiperlúnula en  ℝ𝒏𝒏. 

 

 
Fig. 5 Representación gráfica del esqueleto de una hiperlúnula en  ℝ𝒏𝒏 vista 

superior. 

VIII.  PROBLEMA DE HIPERLÚNULA EN  ℝ𝟑𝟑 
     Enunciado. Determinar el volumen de la hiperlúnula en ℝ3 
delimitada interiormente por la esfera (Véase la figura 4): 
 

𝑆𝑆1: 𝑥𝑥2 + 𝑦𝑦2 + (𝑧𝑧 − 2)2 = 4                      (22) 
 
y exterior a la esfera: 
 

𝑆𝑆2: 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 4                        (23) 
 

 
Fig. 4 Representación visual de apoyo para el problema enunciado. 

 
     Desarrollo. 
     En primer lugar, identificamos los datos geométricos 
implícitos en las ecuaciones dadas:  
 
     La esfera 𝑆𝑆1 tiene centro 𝑂𝑂1(0,0,2) y radio 𝑟𝑟1 = 2   
     La esfera 𝑆𝑆2 tiene centro 𝑂𝑂2(0,0,0) y radio 𝑟𝑟2 = 2 
 

     Además de expresar el dominio en su sistema de 
coordenadas original, el cual corresponde a coordenadas 
rectangulares:  
 
𝐷𝐷 = {(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝜖𝜖 𝑅𝑅3: 𝑥𝑥2 + 𝑦𝑦2 + (𝑧𝑧 − 2)2 ≤ 4 ∧  𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 ≥ 4} 

 
La distancia entre los centros es: 
 

𝑑𝑑 = ‖𝑂𝑂1 − 𝑂𝑂2‖ = �(0− 0) 2 + (0 − 0) 2 + (0 − 1) 2 = 2       (24) 
 
Se procede a verificar la condición de intersección establecida 
en la Definición 5, |𝑟𝑟1 − 𝑟𝑟2| < 𝑑𝑑 < 𝑟𝑟1 + 𝑟𝑟2 . Es decir: 
 

|2 − 2| < 2 < 2 + 2,                                        (25) 
 

     la cual se cumple. Esto garantiza que ambas esferas 
efectivamente se cortan, de modo que la región Hiperlúnular 
está bien definida. 
     Para localizar la superficie de intersección, se parte de la 
ecuación (22). 

𝑥𝑥2 + 𝑦𝑦2 + (𝑧𝑧 − 2)2 = 4,                   (26) 
 
que se desarrolla como: 
 

𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 − 4𝑧𝑧 + 4 = 4                    (27) 
𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 − 4𝑧𝑧 = 0                      (28) 

 
     Por otro lado, con la ecuación de 𝑆𝑆2 (23) se sustrae de la 
expresión desarrollada (28) de la segunda, obteniendo:  
 

  (𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) − ( 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 − 4𝑧𝑧) = 4 − 0   (29) 
 
lo que conduce a: 

4𝑧𝑧 = 4 ⇒ 𝑧𝑧 = 1                               (30) 
 
     Esto indica que la intersección de ambas esferas ocurre en 
el plano horizontal 𝑧𝑧 = 1. Sustituyendo (30) en la ecuación de  
𝑆𝑆2 (23) se determina la curva de intersección:  
 

𝑥𝑥2 + 𝑦𝑦2 + 12 = 4 ⇒  𝑥𝑥2 + 𝑦𝑦2 = 3                 (31) 
 

     Por lo tanto, la sección de corte es una circunferencia de 
radio 𝑟𝑟 = √3 centrada en el origen, situada en el plano z = 1. 
         Con esta caracterización geométrica del dominio, se 
procede a efectuar el cambio de variables a coordenadas 
esféricas, utilizando la notación introducida en (12) y (18), con 
el propósito de expresar la región de la Hiperlúnula en los 
términos establecidos en la Definición 5. 
     Siendo el cambio de coordenadas: 
 

𝜔𝜔1 = 𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓1 ,𝜔𝜔2 = 𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓1 , 
𝜔𝜔3 = 𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓2                                  (32) 

 
     Teniendo el Jacobiano asociado: 
 

𝐽𝐽(𝜌𝜌,𝜓𝜓1 ,𝜓𝜓2 ) = 𝜌𝜌2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓1                        (33) 
 
     Cabe señalar que, al trabajar en coordenadas esféricas, la 
proyección de la intersección (30) corresponde a una 
circunferencia completa, por lo que el ángulo asociado 𝜓𝜓1  
recorre el intervalo [0,2𝜋𝜋]. (Véase la Figura 5) 
 

0 ≤ 𝜓𝜓1 ≤ 2𝜋𝜋                                    (34) 
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Fig. 5 Vista de corte de las dos esferas, que permite apreciar la circunferencia 

de intersección y la delimitación de las regiones hiperlúnulares. 
 

     Para el siguiente ángulo 𝜓𝜓2 , se efectuará el cambio de 
variable indicado en (32) dentro de la expresión de 𝑆𝑆1 
desarrollada (28). Dado que 𝑆𝑆1 es la esfera que contiene 
internamente a la hiperlúnula, y que 𝜌𝜌 representa el radio 
vector trazado desde el centro de 𝑆𝑆2 hasta su casquete, resulta 
necesario determinar el intervalo angular que dicho radio 
vector recorre. 

𝜔𝜔12 + 𝜔𝜔2
2 + 𝜔𝜔3

2 − 4𝜔𝜔3 = 0                    (35) 
 
     A partir de (32), y tras efectuar los cambios 
correspondientes, se obtiene la expresión clásica de las 
coordenadas esféricas:  
 

𝜔𝜔12 + 𝜔𝜔2
2 + 𝜔𝜔3

2 = 𝜌𝜌2                      (36) 
 
     Sustituyendo (36) en (35) la expresión se reduce a: 
 

𝜌𝜌2 − 4𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓2 = 0 ⇒ 𝜌𝜌(𝜌𝜌 − 4𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓2 ) = 0              (37) 
 
     De lo anterior se concluye que el parámetro de entrada es 
𝜌𝜌 = 0 y el parámetro de salida es 𝜌𝜌 = 4𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓2 . No obstante, 
debido a la configuración geométrica de este problema (véase 
la Figura 6), se descarta el valor 𝜌𝜌 = 0, quedando el intervalo 
de 𝜌𝜌: 

2 ≤ 𝜌𝜌 ≤ 4𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓2                                          (38) 
 

 
Fig. 6 Vista de conveniencia utilizada para facilitar la comprensión del 

procedimiento de resolución del problema.  
 

     A partir de (38), y aplicando el método que se considere más 
adecuado para determinar el recorrido del ángulo 𝜓𝜓2 , se 
obtiene directamente su intervalo correspondiente. 
 

0 ≤ 𝜓𝜓2 ≤
𝜋𝜋
3

                                   (39) 
 

     Se procede ahora a definir el dominio de la hiperlúnula en 
ℝ3. 

 𝛺𝛺 = {(𝜌𝜌,𝜓𝜓1 ,𝜓𝜓2 ) 𝜖𝜖 𝑅𝑅3: 2 ≤ 𝜌𝜌 ≤ 4𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓2 , 0 ≤ 𝜓𝜓1 ≤ 2𝜋𝜋 ,0
≤ 𝜓𝜓2 ≤

𝜋𝜋
3

} (40) 
     A partir de (20) se introduce el diferencial 𝑑𝑑Ψ:  
 

𝑑𝑑Ψ = 𝜌𝜌2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓1 𝑑𝑑ρ 𝑑𝑑ψ2𝑑𝑑ψ1,                       (41) 
 
     Considerando los cambios de variables establecidos en (32), 
el diferencial denotado en (41) y el dominio descrito en (40), 
la integral adquiere su forma explícita, correspondiendo 
precisamente al enunciado del Teorema de las hiperlúnulas. 
 

𝑉𝑉𝐿𝐿
(3) = �𝑑𝑑Ψ

Ω
= � � � 𝜌𝜌2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓1 𝑑𝑑𝑑𝑑𝑑𝑑ψ2𝑑𝑑ψ1

4𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓2 

2

𝜋𝜋
3

0

2𝜋𝜋

0
  (42) 

 
     La integración radial se realiza de forma directa, 
produciendo una expresión polinómica en 𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓2 , mientras 
que la integración angular aprovecha la simetría del dominio y 
la separabilidad del factor 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓1. El procedimiento es 
elemental, aunque algebraicamente extenso, por lo que se 
omiten aquí los detalles intermedios. 
     El resultado final conduce al volumen hiperlúnular: 
 

𝑉𝑉𝐿𝐿
(𝑛𝑛) =

22 𝜋𝜋
3

 𝑢𝑢3                                 (43) 
 
     Este teorema guarda plena concordancia con el método 
clásico de cambio de variables en coordenadas esféricas 
cuando se trabaja en ℝ𝟑𝟑. [6] El hecho de que en tres 
dimensiones se recupere la formulación tradicional constituye 
un indicador de validez, el cual, bajo el cambio de coordenadas 
propuesto en este trabajo, coincide con el caso de coordenadas 
esféricas clásicas. En consecuencia, el teorema se establece 
como un resultado consistente en baja dimensión y, al mismo 
tiempo, como una formulación robusta que admite su extensión 
natural a espacios de dimensión arbitraria. 

IX.  COROLARIO 
     Con el propósito de reforzar la validez del Teorema de las 
hiperlúnulas y mostrar su coherencia con los casos particulares 
previamente conocidos, se enuncia a continuación un corolario 
en dimensión reducida.  
     Corolario 1 (Teorema de unificación integral en ℝ𝟐𝟐 con 
cambio de coordenadas). 
     El Teorema de las hiperlúnulas admite como caso particular 
la dimensión bidimensional, en la cual la región Hiperlúnular 
se reduce a una lúnula clásica en el plano.  
 

𝐴𝐴𝐿𝐿 = 𝑉𝑉𝐿𝐿
(2) = �𝑑𝑑Ψ

τ
                                (44) 

 
     Al aplicar el cambio de coordenadas a este caso particular, 
se observa que la transformación coincide con el cambio a 
coordenadas polares clásicas en ℝ𝟐𝟐. En consecuencia, la 
formulación general del presente teorema reproduce como caso 
especial el método previamente desarrollado por el autor para 
el cálculo integral de lúnulas en el plano, mostrando que dicho 
procedimiento queda naturalmente integrado dentro del marco 
n-dimensional establecido aquí. 
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     Corolario 2 (Caso particular del teorema fundador). 
     Cuando el arco exterior corresponde a una 
semicircunferencia, la región Λ queda delimitada por la 
circunferencia principal y la recta que contiene al diámetro de 
dicha semicircunferencia. En este caso, el resultado del 
teorema anterior se simplifica a la expresión: 
 

𝐴𝐴𝐿𝐿 =  𝑉𝑉𝐿𝐿
(2) =    𝜋𝜋 

[𝑟𝑟2]
2

−�  𝑑𝑑Ψ
Λ

                     (45) 

 
     En esta expresión, el primer factor, que originalmente se 
escribía como 𝛥𝛥𝛥𝛥2 + 𝛥𝛥𝛥𝛥2, al trabajar con circunferencias se 
reemplaza de manera explícita 4𝑟𝑟2, para ajustar le expresión 
por la justificación planteada en el caso original. El factor 
restante corresponde a una integral que se desarrolla en el 
mismo sistema de coordenadas planteado en el Corolario 1. 
Dicha expresión es equivalente a la formulación obtenida en 
[1], integrando así el teorema base como una consecuencia 
natural de la generalización propuesta. 

X.  CONCLUSIONES 
     La validez del Teorema de las hiperlúnulas en el cálculo de 
volúmenes 𝑛𝑛-dimensionales queda establecida al generalizar, 
en una sola formulación, los escenarios derivados de 
intersecciones de esferas en ℝ𝒏𝒏. Esta extensión unifica 
rigurosamente los casos particulares estudiados en 
dimensiones menores, mostrando que bajo cualquier 
configuración admisible la representación integral converge a 
una expresión común, lo que asegura su aplicabilidad en 
contextos arbitrarios. 
     La consistencia del teorema se fundamenta en el uso 
preciso de las definiciones, propiedades y teoremas auxiliares 
presentados en las Secciones III y IV, los cuales garantizan la 
coherencia lógica del sistema. A su vez, la unicidad de la 
solución se establece al demostrar que, para cualquier 
conjunto de datos iniciales, la región Ω conduce de manera 
inequívoca a la misma representación integral, 
independientemente de la dimensión considerada. 
     Un rasgo distintivo de este trabajo, en contraste con 
resultados previos en ℝ𝟐𝟐, es que la formulación actual 
trasciende el cálculo de la medida bidimensional inducida de 
lúnulas y se proyecta hacia volúmenes e hipervolúmenes, 
apoyándose en técnicas de cálculo vectorial y en el uso 
sistemático de coordenadas esféricas e hiperesféricas. Esto 
proporciona un procedimiento integral exacto, libre de 
ambigüedades, que amplía y consolida la línea de 
investigación previamente iniciada en el plano. 
     Desde una perspectiva metodológica, el resultado 
representa un avance significativo en el estudio de 
configuraciones curvilíneas de alta dimensión, mostrando que 
el cálculo de volúmenes de hiperlúnulas puede resolverse de 
manera unificada dentro del formalismo matemático moderno, 
sin necesidad de recurrir a aproximaciones geométricas 
externas. Con ello, se sientan las bases para extender el 
método hacia otras intersecciones de cuerpos curvos en 
espacios de mayor dimensión, consolidando un marco teórico 
general caracterizado por rigor, precisión y elegancia. 
     En consecuencia, el teorema aquí presentado no solo 
garantiza consistencia y unicidad, sino que también ofrece un 
sistema flexible de aplicación, capaz de recuperar casos 
particulares en dimensiones menores y proyectarse hacia 
dimensiones arbitrarias. Así, se constituye como una 

formulación integral definitiva para el cálculo de volúmenes 
𝑛𝑛-dimensionales de hiperlúnulas.  
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Resumen- En este trabajo se presenta un teorema generalizado 
para el cálculo integral de la medida bidimensional de lúnulas en 
ℝ𝟐𝟐. La construcción se fundamenta en un procedimiento de 
barridos geométricos y en el empleo de herramientas de cálculo 
vectorial, lo que permite unificar en una sola formulación los tres 
escenarios posibles: regiones sin subdivisión, con subdivisión en 
dos partes y con subdivisión en tres. Con ello se superan las 
restricciones tradicionales impuestas sobre el arco exterior de la 
lúnula y se amplía el resultado de un teorema previo limitado al 
caso de la semicircunferencia. Se establecen la unicidad y 
consistencia del teorema, garantizando su validez en un amplio 
rango de configuraciones geométricas, y se presentan además 
corolarios que simplifican su aplicación en casos particulares, 
incluyendo el problema clásico de Hipócrates. 

Palabras Clave- cálculo vectorial, barridos geométricos, 
lúnulas, áreas en ℝ𝟐𝟐, teorema, geometría integral. 

Abstract- This work presents a generalized theorem for the 
integral computation of the bidimensional measure of lunes in 
ℝ𝟐𝟐. The construction relies on a geometric sweeping procedure 
and the use of vector calculus tools, allowing the unification of 
three possible scenarios: regions without subdivision, regions 
subdivided into two parts, and regions subdivided into three. In 
this way, the classical restrictions imposed on the outer arc of the 
lune are overcome, extending a previous theorem restricted to the 
semicircular case. The uniqueness and consistency of the theorem 
are established, ensuring its validity across a wide range of 
geometric configurations. Furthermore, corollaries are 
presented that simplify its application in particular cases, 
including the classical problem of Hippocrates. 

Keywords- vector calculus, geometric sweeps, lunules, areas in 
ℝ𝟐𝟐, theorem, integral geometry. 

Mathematical Subject Classification: 51M04, 26B15, 
28A25, 52A38.  

I.  INTRODUCCIÓN 
 
     El estudio de las lúnulas ha ocupado un lugar significativo 
dentro de la geometría desde la Antigüedad, particularmente a 
partir de los trabajos de Hipócrates de Quíos, quien exploró la 
posibilidad de cuadrar figuras curvilíneas mediante 
construcciones geométricas. Con el desarrollo del cálculo 
integral y del análisis vectorial, el interés en estas figuras ha 
resurgido en el ámbito contemporáneo, no solo por su valor 
histórico, sino también como un terreno fértil para explorar 
métodos generales de integración sobre dominios limitados 
por arcos de circunferencia. 
     En un trabajo previo se formula un teorema para el cálculo 
general de áreas de lúnulas con arco exterior igual a una 
semicircunferencia mediante geometría integral [1]. Allí se 
estableció, que si la lúnula estaba delimitada por un arco 

semicircular de diámetro igual a  �𝛥𝛥𝛥𝛥2 + 𝛥𝛥𝛥𝛥2 y una adición 
de funcionales de áreas concretas, la medida plana puede 
expresarse mediante la ecuación:   
 

𝐴𝐴𝐿𝐿 =    𝜋𝜋 
[𝛥𝛥𝛥𝛥2 + 𝛥𝛥𝛥𝛥2]

8 − 2

⎣
⎢
⎢
⎢
⎡
� � 𝐹𝐹𝑘𝑘(𝑥𝑥)

𝑎𝑎𝑘𝑘

𝑏𝑏𝑘𝑘

𝑑𝑑𝑑𝑑

𝑛𝑛

𝑘𝑘=1

 

⎦
⎥
⎥
⎥
⎤
           (1) 

 
     Dicho resultado constituyó un avance importante al 
sistematizar el procedimiento de cálculo en un caso particular, 
pero presentó restricciones inherentes a la forma de los arcos 
que definían la lúnula. Estas limitaciones evidenciaron la 
necesidad de un marco más general que no dependiera de 
condiciones específicas, abriendo la posibilidad de formular 
un método aplicable a configuraciones más diversas. 
     En este sentido, el presente artículo introduce un teorema 
generalizado para el cálculo integral en el cálculo de la medida 
bidimensional de lúnulas en ℝ𝟐𝟐. Para su desarrollo se 
construye un algoritmo basado en técnicas de barridos y en el 
uso de herramientas propias del cálculo vectorial, lo que 
asegura la aplicabilidad del método sin restringirse a una 
configuración particular de los arcos. Asimismo, se demuestra 
la unicidad del algoritmo propuesto y se establece una 
formulación que garantiza consistencia en contextos 
geométricos diversos. Con ello, se amplía el marco teórico 
disponible para el estudio de figuras delimitadas por arcos de 
circunferencia, ofreciendo un resultado de carácter general y 
de mayor alcance que el previamente obtenido. 

II.  PROPIEDADES Y TEOREMAS AUXILIARES 
     A continuación, se presentan herramientas fundamentales 
que servirán como soporte para la formulación del teorema, 
garantizando su consistencia interna y la unicidad de su 
enunciado. 
 
     Propiedad (Prop.) 1.- Linealidad de la integral [2]: 
Sean 𝑓𝑓,𝑔𝑔:𝑅𝑅 → ℝ funciones integrables y sean 𝑎𝑎,𝑏𝑏 𝜖𝜖 ℝ. 
Entonces: 
 
��𝑎𝑎𝑎𝑎(𝑥𝑥, 𝑦𝑦) + 𝑏𝑏𝑏𝑏(𝑥𝑥,𝑦𝑦)�
𝑅𝑅

𝑑𝑑𝑑𝑑 =  𝑎𝑎�𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑
𝑅𝑅

+ 𝑏𝑏�𝑔𝑔(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑   (2)
𝑅𝑅

 

 
     Prop. 2.- Propiedad dominante (criterio de comparación) 
[3]: 
Si 𝑓𝑓,𝑔𝑔:𝑅𝑅 → ℝ son funciones medibles y se cumple que: 
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|𝑓𝑓(𝑥𝑥,𝑦𝑦)| ≤ 𝑔𝑔(𝑥𝑥,𝑦𝑦)  ∀ (𝑥𝑥,𝑦𝑦 )𝜖𝜖 𝑅𝑅                     (3) 

 
Donde 𝑔𝑔 es integrable en 𝛺𝛺, entonces 𝑓𝑓 también es integrable 
en 𝑅𝑅 y se cumple: 
  

��𝑓𝑓(𝑥𝑥, 𝑦𝑦) 𝑑𝑑𝑑𝑑
𝑅𝑅

� ≤ �𝑔𝑔(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑                  (4)
𝑅𝑅

 

 
     Prop. 3.- Subdivisión del dominio [4]:  
Sea 𝑅𝑅 ⊂ ℝ2 una región que puede expresarse como unión 
disjunta de subregiones medibles 𝑅𝑅1,𝑅𝑅2,𝑅𝑅3, . . . ,𝑅𝑅𝑛𝑛. Si 𝑓𝑓 es 
integrable en 𝑅𝑅, entonces: 
 
�𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑

𝑅𝑅
 =  � 𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑

𝑅𝑅2 

= � 𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑
𝑅𝑅2 

+ ⋯+� 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑     (5)
𝑅𝑅𝑛𝑛 

 

 
     Teorema (Teo.) 1.- Teorema de Fubini [5]: 
Sean 𝑓𝑓:𝑅𝑅 → ℝ continua en una región de tipo I o de tipo II. 
 
Si 𝑅𝑅 es de tipo I: 
 

𝑅𝑅 = {(𝑥𝑥,𝑦𝑦)| 𝑔𝑔1(𝑥𝑥) ≤ 𝑦𝑦 ≤ 𝑔𝑔2(𝑥𝑥), 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏} 
 

   �𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑
𝑅𝑅

 = � � � 𝑓𝑓(𝑥𝑥,𝑦𝑦)

𝑔𝑔2(𝑥𝑥)

𝑔𝑔1(𝑥𝑥)
𝑑𝑑𝑑𝑑�

𝑏𝑏

𝑎𝑎
𝑑𝑑𝑑𝑑                 (6) 

 
Si 𝑅𝑅 es de tipo II: 
 

𝑅𝑅 = {(𝑥𝑥, 𝑦𝑦)| ℎ1(𝑦𝑦) ≤ 𝑥𝑥 ≤ ℎ1(𝑦𝑦), 𝑐𝑐 ≤ 𝑦𝑦 ≤ 𝑑𝑑} 
 

   �𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑
𝑅𝑅

 = � � � 𝑓𝑓(𝑥𝑥,𝑦𝑦)

ℎ2(𝑦𝑦)

ℎ1(𝑦𝑦)

𝑑𝑑𝑑𝑑�
𝑑𝑑

𝑐𝑐
𝑑𝑑𝑑𝑑            (7) 

 

III.  TEOREMA [1] 

     Sea una lúnula delimitada por dos arcos de circunferencia 
en el plano ℝ𝟐𝟐. Entonces, la medida bidimensional de la lúnula 
puede calcularse mediante las siguientes expresiones:  
     Para una región de Tipo I sin subdivisión de su dominio: 
 

𝛺𝛺 = �(𝑥𝑥,𝑦𝑦) ∈ ℝ2| 𝐶𝐶1(𝑥𝑥) ≤ 𝑦𝑦 ≤ 𝐶𝐶2(𝑥𝑥); 𝜌𝜌1 ≤ 𝑥𝑥 ≤ 𝜌𝜌2} 
 

𝐴𝐴𝐿𝐿 =    �𝑑𝑑𝑑𝑑
𝛺𝛺

                   □                      (8) 

   
     Para una región de Tipo II sin subdivisión de su dominio:  
 

𝛺𝛺 = �(𝑥𝑥,𝑦𝑦) ∈ ℝ2| 𝐶𝐶1(𝑦𝑦) ≤ 𝑥𝑥 ≤ 𝐶𝐶2(𝑦𝑦); 𝜌𝜌1 ≤ 𝑦𝑦 ≤ 𝜌𝜌2} 
 

𝐴𝐴𝐿𝐿 =    �𝑑𝑑𝑑𝑑                     □                      (9)
𝛺𝛺

 

 
     Para una región de Tipo I o II con subdivisión de su 
dominio: 

𝛺𝛺 = �𝛺𝛺𝑘𝑘 

𝑛𝑛

𝑘𝑘=1

,𝛺𝛺𝑖𝑖 ∩ 𝛺𝛺𝑗𝑗 = ∅ (𝑖𝑖 ≠ 𝑗𝑗)  

 

𝐴𝐴𝐿𝐿 =    �𝑑𝑑𝑑𝑑
𝛺𝛺

= �� 𝑑𝑑𝑑𝑑                                   (10)
𝛺𝛺𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

     IV.  DEMOSTRACIÓN  

     Sean 𝐶𝐶1,𝐶𝐶2 circunferencias que se intersecan en un par de 
puntos. Denoto por 𝐶𝐶1 𝑙𝑙a curva que delimita el espacio 
geométrico donde inicio el barrido, y por 𝐶𝐶2 aquella donde 
dicho proceso concluye. Posteriormente, designo por 𝜌𝜌1 y 𝜌𝜌2 
los límites numéricos de integración asociados a la región 
encerrada. 
     Se concibe a la lúnula como la región formada por dos 
circunferencias, donde una permanece fija mientras la otra se 
traslada a lo largo de su contorno, generando así infinitas 
configuraciones posibles. No obstante, es suficiente destacar 
tres casos principales, los cuales permiten obtener un 
panorama completo del problema. 
 
     Caso I (Regiones sin subdivisión del dominio): 
     Sea el caso en el cual la configuración de posiciones de 
ambas circunferencias permite describir a la región 𝛺𝛺 como 
una sola entidad sin necesidad de subdivisión como se ilustra 
en la Figura 1. 
     En particular, si se trabaja con una región de tipo I, 𝛺𝛺 está 
acotada por los arcos 𝐶𝐶1 y 𝐶𝐶2, con límites de integración en el 
eje correspondiente dados por 𝜌𝜌1 y 𝜌𝜌2.  
     En consecuencia, de acuerdo con el Teorema 1 enunciado 
en la sección III, la región 𝛺𝛺 se describe mediante la siguiente 
formulación integral para una región de tipo I: 
 

𝛺𝛺 = �(𝑥𝑥,𝑦𝑦) ∈ ℝ2| 𝐶𝐶1(𝑥𝑥) ≤ 𝑦𝑦 ≤ 𝐶𝐶2(𝑥𝑥); 𝜌𝜌1 ≤ 𝑥𝑥 ≤ 𝜌𝜌2} 
 
 
     Análogamente la formulación integral para una región de 
tipo II: 

𝛺𝛺 = �(𝑥𝑥,𝑦𝑦) ∈ ℝ2| 𝐶𝐶1(𝑦𝑦) ≤ 𝑥𝑥 ≤ 𝐶𝐶2(𝑦𝑦); 𝜌𝜌1 ≤ 𝑦𝑦 ≤ 𝜌𝜌2} 
 
     Siendo 12 el funcional de área de la lúnula. 
 

𝐴𝐴𝐿𝐿 =    �𝑑𝑑𝑑𝑑
𝛺𝛺

                                   □    (11) 

 
     Caso II (Regiones con subdivisión en dos partes del 
dominio): 
    Sea el caso en el cual la configuración de las circunferencias 
obliga a descomponer la región 𝛺𝛺 en dos subregiones, de modo 
que cada una pueda expresarse adecuadamente como región 
de tipo I o de tipo II, según se muestra en la Figura 2. 

 
     En este escenario, la Propiedad 3 garantiza que: 
  

𝛺𝛺 =  𝛺𝛺1 ∩ 𝛺𝛺2 ;   𝛺𝛺𝑖𝑖 ∩ 𝛺𝛺𝑗𝑗 = ∅ (𝑖𝑖 ≠ 𝑗𝑗) 

𝐴𝐴𝐿𝐿 =    �𝑑𝑑𝑑𝑑
𝛺𝛺

= � 𝑑𝑑𝑑𝑑
𝛺𝛺1 

+ � 𝑑𝑑𝑑𝑑             □   (12)
𝛺𝛺2 

 

 
     Siendo 12 la expresión para calcular la medida 
bidimensional de la lúnula. 
 
     En particular, la subdivisión surge debido a que los arcos 𝐶𝐶1 
y 𝐶𝐶2 intercambian sus roles como límite superior o inferior (o 
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izquierdo y derecho) a lo largo del dominio, generando un 
punto de transición natural que exige la partición. 

     Caso III (Regiones con subdivisión en tres partes del 
dominio): 
     Este caso constituye una extensión del Caso II, en el que la 
región 𝛺𝛺 requiere descomponerse en tres subregiones en lugar 
de dos. La necesidad de esta subdivisión adicional surge de la 
interacción geométrica de los arcos 𝐶𝐶1 y 𝐶𝐶2, lo que impide 
describir 𝛺𝛺 como una única región de tipo I o II. Véase la 
Figura 3. 
     Así, aplicando la Propiedad 3, se obtiene: 

 
𝛺𝛺 =  𝛺𝛺1 ∩ 𝛺𝛺2 ∩ 𝛺𝛺3 ;   𝛺𝛺𝑖𝑖 ∩ 𝛺𝛺𝑗𝑗 = ∅ (𝑖𝑖 ≠ 𝑗𝑗)  

 
𝐴𝐴𝐿𝐿 =    �𝑑𝑑𝑑𝑑

𝛺𝛺
= � 𝑑𝑑𝑑𝑑

𝛺𝛺1 

+ � 𝑑𝑑𝑑𝑑 + � 𝑑𝑑𝑑𝑑
𝛺𝛺3 

     □  (13)
𝛺𝛺2 

 

 
     Reunidos los resultados de los tres casos analizados, se 
observa que todos pueden integrarse en una única formulación 
general. En efecto, independientemente de que la región 𝛺𝛺 se 
describa sin subdivisión, o bien como la unión de dos o tres 
subregiones, la medida plana de la lúnula queda determinada 
por la misma expresión integral.  
     De este modo, se establece la ecuación final del Teorema, 
la cual unifica y generaliza los distintos escenarios 
considerados: 

𝛺𝛺 = �𝛺𝛺𝑘𝑘 

𝑛𝑛

𝑘𝑘=1

,𝛺𝛺𝑖𝑖 ∩ 𝛺𝛺𝑗𝑗 = ∅ (𝑖𝑖 ≠ 𝑗𝑗)  

 

𝐴𝐴𝐿𝐿 =    �𝑑𝑑𝑑𝑑
𝛺𝛺

= �� 𝑑𝑑𝑑𝑑                         ∎
𝛺𝛺𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

 
     Donde k ∈ ℕ es un índice de enumeración que recorre las 
subregiones disjuntas Ωk, con 1 ≤ k ≤ n, y donde n ∈
{1,2,3} corresponde al número de subregiones en cada uno de 
los casos analizados. 

V.  COROLARIO 
 
     Corolario 1 (Expresión alternativa del área de la 
lúnula). 
     El funcional de área de la lúnula delimitada por los arcos 𝐶𝐶1 
y 𝐶𝐶2,  puede calcularse de manera equivalente mediante la 
siguiente expresión: 
 

𝐴𝐴𝐿𝐿 =    𝜋𝜋 
[𝛥𝛥𝛥𝛥2 + 𝛥𝛥𝛥𝛥2]

4 −�� 𝑑𝑑𝑑𝑑                   (14)
Ψ𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

      
     El razonamiento se basa en observar que la lúnula puede 
interpretarse como el área de una circunferencia completa 
menos la sección determinada por la intersección de ambas 
circunferencias. En consecuencia, dicha diferencia conduce de 
manera directa al funcional de área buscada. 
 
 
 

     Corolario 2 (Caso particular del teorema previo). 
     Cuando el arco exterior corresponde a una 
semicircunferencia, y empleando el razonamiento del 
Corolario 1, la región Λ queda delimitada por la circunferencia 
principal y el diámetro de la semicircunferencia. En este caso, 
el resultado del Teorema previo se simplifica a la expresión: 
 

𝐴𝐴𝐿𝐿 =    𝜋𝜋 
[𝛥𝛥𝛥𝛥2 + 𝛥𝛥𝛥𝛥2]

8 −�� 𝑑𝑑𝑑𝑑                   (15)
Λ𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

 
     Dicha expresión coincide con la formulación obtenida en 
[1], integrando así el teorema previo como consecuencia 
natural de la generalización actual.  

VI.  ESCOLIO 

 
Fig. 1 Esquema ilustrativo del Caso I, donde la región  

se describe como un único dominio sin necesidad de subdivisiones. 
 

 
Fig. 2. Esquema ilustrativo del Caso II, en el cual la región debe 

descomponerse en dos subregiones para ser representada como región de 
tipo I o tipo II. 

 

Fig. 3. Esquema ilustrativo del Caso III, donde la región se subdivide en tres 
partes, requiriendo un tratamiento integral más general. 
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VII.  PROBLEMA DE LÚNULA EN  ℝ𝟐𝟐 
     Con el propósito de ilustrar la aplicabilidad del teorema 
desarrollado, presento a continuación un problema clásico de 
la geometría: el cálculo de la medida bidimensional de una 
lúnula atribuida a Hipócrates de Quíos.  
     Enunciado. Calcula la funcional del área de la lúnula 
formada por la arista de un polígono regular de 4 aristas 
circunscrito a una circunferencia de centro (3,0)  y radio de 2𝑢𝑢 
y delimitado superiormente por una semicircunferencia. 
Como se muestra en la Figura 4. 
 

 
Fig. 4. Ilustración esquemática del problema planteado. 

 
     Denoto como 𝐶𝐶1 a la circunferencia mayor con centro 𝑂𝑂1 =
(3,0) y radio de 2𝑢𝑢, y por 𝐶𝐶2 a la semicircunferencia cuyo 
diámetro corresponde a la arista del polígono inscrito en 𝐶𝐶1. 
 
Expreso a 𝐶𝐶1 y a 𝐶𝐶2 mediante sus respectivas ecuaciones 
analíticas, siendo:  
 

𝐶𝐶1: (𝑥𝑥 − 3)2 + (𝑦𝑦)2 = 4                                 (16) 
𝐶𝐶2: (𝑥𝑥 − 2)2 + (𝑦𝑦 − 1)2 = 2                             (17) 

 
     Determino que, por la configuración geométrica de la 
lúnula, resulta indiferente trabajar con una región de tipo I o de 
tipo II, dado que en ambos casos no es posible describir la 
medida bidimensional completa como una única región sin 
subdivisiones. Para efectos del desarrollo, opto por trabajar con 
una región de tipo II. Defino entonces: 

 
𝛺𝛺 =  𝛺𝛺1 ∩ 𝛺𝛺2 ;  𝛺𝛺𝑖𝑖 ∩ 𝛺𝛺𝑗𝑗 = ∅ (𝑖𝑖 ≠ 𝑗𝑗) 

𝛺𝛺1 = �(𝑥𝑥,𝑦𝑦) ∈ ℝ2| ℎ2(𝑦𝑦) ≤ 𝑥𝑥 ≤ ℎ1(𝑦𝑦); 𝜌𝜌1 ≤ 𝑦𝑦 ≤ 𝜌𝜌2} 
𝛺𝛺2 = �(𝑥𝑥,𝑦𝑦) ∈ ℝ2| ℎ2(𝑦𝑦) ≤ 𝑥𝑥 ≤ ℎ2(𝑦𝑦); 𝜌𝜌2 ≤ 𝑦𝑦 ≤ 𝜌𝜌3}, 

 
     Donde ℎ1(𝑦𝑦) y a ℎ2(𝑦𝑦) representan las fronteras inducidas 
por los arcos 𝐶𝐶1 y 𝐶𝐶2, y 𝜌𝜌1, 𝜌𝜌2, 𝜌𝜌3, son los límites numéricos de 
integración en el eje 𝑦𝑦. 
     La expresión para el cálculo de la región por la integral 
viene dada por: 
 

𝐴𝐴𝐿𝐿 =    �𝑑𝑑𝑑𝑑
𝛺𝛺

 = � 𝑑𝑑𝑑𝑑
𝛺𝛺1 

+ � 𝑑𝑑𝑑𝑑
𝛺𝛺2 

                      (18) 

 
Y su expresión explícita: 

 

𝐴𝐴𝐿𝐿 =    � �� 𝑑𝑑𝑑𝑑
ℎ1(𝑦𝑦)

ℎ2(𝑦𝑦)
�𝑑𝑑𝑑𝑑

𝜌𝜌2

𝜌𝜌1

 + � �� 𝑑𝑑𝑑𝑑
ℎ2(𝑦𝑦)

ℎ2(𝑦𝑦)
�𝑑𝑑𝑑𝑑

𝜌𝜌3

𝜌𝜌2

    (19) 

 
De 16 y 17 se obtiene ℎ1 y ℎ2: 
 

ℎ1(𝑦𝑦) =  ±�4 − 𝑦𝑦2 + 3                            (20) 
ℎ2(𝑦𝑦) =  ±�2 − (𝑦𝑦 − 1)2 + 2                      (21) 

 
     Los valores de los límites numéricos de integración dados 
por 𝜌𝜌1, 𝜌𝜌2, 𝜌𝜌3, en este caso particular se determinan a partir de 
la intersección de los arcos 𝐶𝐶1 y 𝐶𝐶2 (para 𝜌𝜌1 y 𝜌𝜌2) y del punto 
más alto de la circunferencia 𝐶𝐶2 (para 𝜌𝜌3). Existen diversos 
procedimientos para calcularlos; sin embargo, dado que todos 
conducen al mismo resultado y no constituyen el foco del 
presente trabajo, omito su desarrollo detallado y me limito a 
señalar directamente el intervalo de integración 
correspondiente. 
 
     El dominio de la región queda definido por 
𝛺𝛺 = {(𝑥𝑥,𝑦𝑦) ∈ ℝ2|  −�2 − (𝑦𝑦 − 1)2 + 2 ≤ 𝑥𝑥 ≤ −�4 − 𝑦𝑦2 + 3;  0 ≤ 𝑦𝑦

≤ 2}  ∪ {(𝑥𝑥,𝑦𝑦) ∈ ℝ2|  −�2 − (𝑦𝑦 − 1)2 + 2 ≤ 𝑥𝑥
≤ �2 − (𝑦𝑦 − 1)2 + 2;  2 ≤ 𝑦𝑦 ≤ 1 + √2}, 

 
 y la expresión para el cálculo de su medida plana viene dada 
por: 
 

𝐴𝐴𝐿𝐿 =    � �� 𝑑𝑑𝑑𝑑
−�4 −𝑦𝑦2+3

−�2 −(𝑦𝑦−1)2+2
�𝑑𝑑𝑑𝑑

2

0
 + � �� 𝑑𝑑𝑑𝑑

�2 −(𝑦𝑦−1)2+2

−�2 −(𝑦𝑦−1)2+2
�𝑑𝑑𝑑𝑑

1+√2

2
    (22) 

  
     Finalmente, al resolver esta formulación se obtiene que el 
valor de la integral sobre la región de la lúnula es de 2𝑢𝑢2. 
 
     En este caso particular, la medida bidimensional obtenida 
para la lúnula coincide con la del triángulo rectángulo formado 
por la arista del polígono y las perpendiculares trazadas desde 
sus extremos hasta el centro de la circunferencia 𝐶𝐶1. Este hecho 
es consistente con el teorema clásico de las lúnulas de 
Hipócrates, según el cual determinadas lúnulas poseen una 
medida plana exactamente igual a la de un triángulo rectángulo 
construido a partir de los radios de la circunferencia. Así, el 
resultado obtenido no solo valida el procedimiento integral 
aplicado, sino que también establece un puente entre el 
enfoque moderno de cálculo y la tradición geométrica clásica. 
 
     Alternativamente, al aplicar directamente el Corolario 2 
considerando una región de tipo I, el funcional de área de la 
lúnula se obtiene mediante la expresión: 
 
Λ = �(𝑥𝑥,𝑦𝑦) ∈ ℝ2| 𝑥𝑥 − 1 ≤ 𝑦𝑦 ≤ �4 − (𝑥𝑥 − 3)2;  1 ≤ 𝑦𝑦 ≤ 3} 

 

𝐴𝐴𝐿𝐿 =    𝜋𝜋 
[𝛥𝛥𝛥𝛥2 + 𝛥𝛥𝛥𝛥2]

8 −�� 𝑑𝑑𝑑𝑑                   (23)
Λ𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

 
     Al resolver esta formulación bajo el planteamiento de 
región de tipo I, se obtiene directamente el valor de la medida 
plana, resultando en 2𝑢𝑢2, este resultado confirma la 
consistencia entre el método integral desarrollado previamente 
y la expresión simplificada derivada del corolario. 
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     Cabe destacar que la elección del procedimiento para 
calcular el funcional de área de una lúnula ya sea mediante el 
teorema general propuesto en este trabajo, el teorema 
formulado previamente, o bien a través de los corolarios aquí 
establecidos depende en gran medida de la naturaleza del 
problema, la complejidad geométrica de la configuración 
considerada y la conveniencia técnica de cada caso. De este 
modo, el marco teórico construido ofrece diversas rutas de 
solución, todas ellas rigurosas, cuya selección final responde al 
criterio matemático más adecuado para el contexto específico. 

VIII. CONCLUSIONES  
     La validez del Teorema de unificación integral en el 
cálculo de los funcionales de áreas de lúnulas queda 
establecida al unificar en una sola formulación los tres 
escenarios posibles: regiones sin subdivisión, con subdivisión 
en dos partes y con subdivisión en tres. Esta clasificación 
exhaustiva demuestra que, bajo cualquier configuración de 
arcos de circunferencia que conformen la lúnula, el cálculo 
integral converge a una expresión común, garantizando así su 
aplicabilidad general. 
     La consistencia del teorema se respalda en el uso riguroso 
de las propiedades fundamentales enunciadas en la Sección 
III, que aseguran la coherencia lógica interna del sistema. 
Asimismo, la unicidad de la solución se establece a partir de 
la demostración de que, para cualquier conjunto de datos 
admisibles, la región 𝛺𝛺 conduce de manera inequívoca a la 
misma representación integral, independientemente del tipo 
de subdivisión empleada. 
     Un aspecto distintivo de este trabajo, frente a mi teorema 
previo limitado al caso en que el arco exterior fuese una 
semicircunferencia, radica en que el presente desarrollo 
elimina dicha restricción y amplía el resultado hacia 
configuraciones arbitrarias de arcos. Además, mientras que en 
el enfoque anterior la implementación práctica estaba sujeta a 
un margen de estabilidad numérica limitada, en esta 
formulación los barridos verticales y horizontales permiten un 
procedimiento exacto, libre de errores cuantización. 
     La introducción de los corolarios complementa este marco 
teórico al proporcionar vías alternativas y simplificadas de 
resolución en casos particulares, como quedó demostrado en 
la aplicación al problema clásico de Hipócrates. De esta 
manera, el trabajo no solo confirma la validez del resultado 
general, sino que también exhibe su capacidad de recuperar 
soluciones históricas y de ofrecer procedimientos más 
eficientes cuando la configuración geométrica lo permite. 
     Desde una perspectiva metodológica, el resultado 
constituye un avance significativo en el estudio de las lúnulas: 
muestra que el cálculo de sus medidas bidimensionales puede 
resolverse íntegramente dentro del formalismo matemático 
moderno, sin recurrir a aproximaciones ni a instrumentos 
geométricos clásicos. Con ello, se sienta una base sólida para 
la extensión del método hacia otras configuraciones 
curvilíneas de interés, consolidando un marco teórico general 
que integra rigor, precisión y elegancia. 
     De este modo, el teorema aquí presentado no solo garantiza 
rigor, consistencia y unicidad, sino que además ofrece un 
sistema flexible de métodos ya sea mediante el resultado 
general, su antecedente particular o los corolarios derivados, 
consolidándose como una formulación integral definitiva para 
el cálculo de la medida bidimensional de lúnulas. 
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Resumen- En el presente artículo propone la axiomatización del 
modelo de colapso formal GRW (Ghirardi-Rimini-Weber) de 
SLE (spontaneous localization events) mediante el concepto de 
familias infinitas contables de estados cuánticos discretos 
(CIFDQS) como una función de elección utilizando el axioma de 
elección de Zermelo-Fraenkel; así mismo se realiza una 
simulación del modelo matemático en QISKIT.  

Palabras Clave- colapso formal, axioma de elección, SLE, 
GRW, CIFDQS. 

Abstract- In this article the axiomatization of the GRW 
(Ghirardi-Rimini-Weber) formal collapse model of SLE 
(spontaneous localization events) is proposed using the concept 
of countably infinite families of discrete quantum states 
(CIFDQS) as a choice function using the Zermelo-Fraenkel 
choice axiom; also a simulation of the mathematical model is 
developed in QISKIT. 

Keywords- mathematical modeling, formal collapse, axiom of 
choice, SLE GRW, CIFDQS.  
Аннотация-В данной статье предлагается аксиоматизация 
формальной модели коллапса GRW (Ghirardi-Rimini-Weber) 
SLE (спонтанных локализационных событий) с 
использованием концепции счетных бесконечных семейств 
дискретных квантовых состояний (CIFDQS) в качестве 
функции выбора с использованием аксиомы выбора 
Цермело-Френкеля; также разработана симуляция 
математической модели в QISKIT.. 
Лючевые Слова- математическое моделирование, 
формальный коллапс, аксиома выбора, SLE GRW, CIFDQS. 
Mathematical Subject Classification: 81Pxx, 03E25, 81-10, 81S25. 

I. INTRODUCCIÓN 
La banda de rock progresivo Rush en su tema 

“Freewill" del disco Permanent Waves de 1980 menciona: 
“You can choose not to decide, but still you have made a 
choice.”  indicando que un principio inmutable de la 
existencia es la elección independientemente de que no se 
lleve a cabo la misma, por lo que es inevitable hacer una 
elección entre infinitas posibilidades numerables. Lo 
anterior coincide con el padre del existencialismo Søren 
Aabye Kierkegaard  en su obra Either/Or en donde indica 
que: “Choose! That is the essence of existence.”; por lo que 
la existencia genera la regla de selección y esta termina en 
un estado del universo cuántico formal (medible) 
denominado “colapso” -a diferencia de la sociología, en la 
que es una idea no medible-, que coincide con las 
discusiones de Niels Bohr con Wheeler donde indica el 

primero que:  “No phenomenon is a phenomenon until it is 
an observed phenomenon” [1].  

Para la RAE la elección es una selección o preferencia 
entre varias opciones [2] y como se ha mencionado es un 
proceso propio de la existencia, física cuántica y del 
pensamiento abstracto de las matemáticas que ha sido 
abordado por diversos filósofos como parte de la 
naturaleza. 

El presente artículo propone adapta y moderniza el AC 
o Axiom of Choice (Axioma de Elección) [3] [4] [5]  de E. 
Zermelo y A. Fraenkel (ZFC)  para una familia infinita 
(pero numerable) de estados cuánticos discretos elegibles 
sobre modelos físicos de colapso cuántico objetivo del tipo 
GRW (Ghirardi-Rimini-Weber) [6]. 

El trabajo aborda el concepto de “colapso cuántico 
objetivo GRW” [6]  como un postulado de elección físico 
en donde se realiza una transición de un conjunto (finito o 
infinito de estados cuánticos) a un único estado. 

La premisa matemática de trabajo es abordar colapso 
cuántico objetivo [6] como una función de elección sobre 
una familia infinita de estados cuánticos discretos que 
exista bajo el principio del axioma de elección (AC) [3] [4] 
[5]  que selecciona un elemento de cada conjunto 𝐴𝐴 ≠ ∅. 

El modelo permite describir los cambios de estados 
estocásticos y las localizaciones espontáneas cuánticas se 
observan como una operación de elección sobre el AC  en 
donde mediante la superposición de una familia infinita de 
estados discretos posibles, uno es elegido y se convierte en 
la realidad del observador.  

Así mismo el trabajo intenta aplicar y demostrar (al 
menos en una escala computable pequeña) mediante una 
simulación del modelo como una función de elección en 
una familia de estados discretos que transita estados hacia 
un “colapso” basado en la teoría GRW [6], con lo que se 
obtiene una lectura en un contexto virtual. 

Con lo anterior el trabajo permite conectar las 
elecciones con el colapso estocástico que puedan generar 
nuevos modelos de colapso cuántico, o ser abordado desde 
las teorías de información cuántica para el determinismo 
de LLMs o Large Language Models (Grandes Modelos de 
Lenguaje) para chatbots. 

mailto:marcos.fajardor@aefcm.gob.mx
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II. AXIOMA DE ELECCIÓN (CA).  
El Axioma de Elección (AC) surge en 1904 con el trabajo 

original de E. Zermelo en Mathematische Annalen, Vol. 59, en 
la página 516 en donde indica que: “Beweis, daß jede Menge 
wohlgeordnet werden kann. (Aus einem an Herrn Hilbert 
gerichteten Briefe)” [3], el cual es una carta para Hilbert 
denominada “Demostración de que todo conjunto puede ser 
bien ordenado” en donde proponía una solución al trabajo de 
1895 en  teoría de conjuntos de Cantor “Beiträge zur 
Begründung der transfiniten Mengenlehre. I” (Contribuciones 
a la fundamentación de la teoría de conjuntos transfinitos I”) 
[7] y el trabajo de 1902 de Hilbert “Mathematical Problems” 
(Problemas Matemáticos) [8].  

Respetando la terminología original de Zermelo [3] en su 
primer trabajo del AC de 1904, no se describe un “axioma de 
elección” como notación; si no como un intento de demostrar 
que con base en el principio de que los “recubrimientos” 
(conjuntos de subconjuntos o “familias de subconjuntos”) que 
existen para la “totalidad infinita de conjuntos” (conjuntos 
finitos o infinitos), siempre hay “mapeos” (mapeo, función, 
morfismo, aplicación, u operador funcional son sinónimos 
según el contexto  [9]) que permiten elegir para cada conjunto, 
uno de sus elementos de acuerdo a las definiciones 1 y 3 de 
Zermelo [3]:  

 
1)   Sea 𝑀𝑀 un conjunto arbitrario de cardinalidad 𝔪𝔪, 

y sea 𝑚𝑚 un elemento arbitrario de este.  
Sea 𝑀𝑀′ de cardinalidad 𝔪𝔪´ un subconjunto de 𝑀𝑀 que 
contiene al menos un elemento que contiene al menos 
un elemento 𝑚𝑚, pudiendo contener todos los elementos de 
𝑀𝑀.  
Sea 𝑀𝑀 −𝑀𝑀´  un subconjunto “complementario” [3] de 𝑀𝑀´ 
; dos subconjuntos serán distintos si uno de ellos contiene 
algún elemento que no aparece en el otro y sea 𝕄𝕄 el 
conjunto de todos los subconjuntos 𝑀𝑀´. 
 

3)  Un conjunto 𝑌𝑌 es cualquier conjunto 𝑀𝑀𝑌𝑌  “bien 
ordenado” [3]  que consiste enteramente de elementos de 
𝑀𝑀 con la propiedad de que siempre que 𝑎𝑎 ∈ 𝑀𝑀𝑌𝑌 sea un 
elemento arbitrario;  𝐴𝐴 será el segmento “asociado” 
formado por los elementos 𝑥𝑥 ∈ 𝑀𝑀 donde: 𝑥𝑥 <  𝑎𝑎; 𝑎𝑎 ≠
𝑀𝑀 —  𝐴𝐴.  
 
Junto a la siguiente propiedad:  
Sea un conjunto 𝑌𝑌 que perteneció en un momento  𝑡𝑡1 a 𝑀𝑀 −

𝐿𝐿𝑌𝑌 que en:   
 

∃𝑡𝑡0(𝑚𝑚) ∈ 𝑀𝑀 ∉ 𝑌𝑌 → ∃𝑡𝑡1(𝑚𝑚´1) ∈ 𝑀𝑀 − 𝐿𝐿𝑌𝑌. 
 
Donde también existe el conjunto ordenado: 
 

 (𝐿𝐿𝑌𝑌,𝑚𝑚´1) ∣ ∀(𝑦𝑦 ∈ 𝑌𝑌) < 𝑚𝑚´1 de acuerdo a la 
definición 3 de Zermelo será un conjunto 𝑌𝑌; por lo tanto 
𝑚𝑚´ ∈ 𝑌𝑌; contrario a lo que se supone y 𝐿𝐿𝑌𝑌 = 𝑀𝑀; siendo 𝑀𝑀 
un conjunto con “buen orden” [3]. 

 
En consecuencia a cada “recubrimiento” le 

corresponderá un “buen orden” [3] definido por el 
conjunto 𝑀𝑀; aún si el “buen orden” [3] de dos 
“recubrimientos” distintos no siempre son distintos. En 
cualquier caso, debe existir al menos un “buen orden” [3] 
de este tipo y todo conjunto para el cual la totalidad de 

subconjuntos, etc., sea significativa puede considerarse con 
“buen orden” [3] y su cardinalidad como un (número) “aleph” 
[3] (una secuencia de números que representan la cardinalidad 
o tamaño de conjuntos infinitos); deduciendo que, para cada 
cardinalidad transfinita se cumple:  
 

𝔪𝔪 =  2𝔪𝔪 =  𝑁𝑁0𝔪𝔪 =  𝔪𝔪2  
 

Y así sucesivamente; por lo que dos conjuntos cualesquiera 
son “comparables”; es decir, uno de ellos siempre puede ser 
“mapeado” (función [9]) uno a uno sobre el otro o sobre una 
de sus partes; intentando probar  que: 

“Der vorliegende Beweis beruht auf der Voraussetzung, 
daß Belegungen y iiberhaupt existieren, also auf dem Prinzip, 
daB es auch für eine unendliche Gesamtheit von Mengen 
immer Zuordnungen gibt, bei denen jeder Menge eines ihrer 
Elemente…” [3]; es decir: “La presente prueba se basa en el 
supuesto de que las asignaciones existen; es decir, en el 
principio de que incluso para un conjunto infinito de 
conjuntos siempre hay asignaciones en las que a cada 
conjunto se le asigna uno de sus elementos…”[3]. 

 
Posteriormente en su trabajo de 1908 dentro del 

Mathematische Annalen, Vol. 65, en la página 266 Zermelo lo 
estructura como axioma indicando que: “Axiom VI. Ist T eine 
Menge, deren samtliche Elemente von 0 ver-schiedene 
Mengen und untereinander elementenfremd sind, so enthält 
ihre Vereinigung 𝔖𝔖T mindestens eine Untermenge 𝑆𝑆1 welche 
mit jedem Elemente von  T ein nnd nur  ein Element  gemein 
hat.  

(Axiom der Auswahl.) 
Man kann das Axiom  auch  so  ausdrücken.  daB  man  

sagt,  es  sei immer möglich, aus jedem Elemente M, N, R, ··· 
von T ein einzelnes Element m, n, r·, ··· auszuwalden und alle  
diese   Elemente  zu  einer Menge  𝑆𝑆1 zu   vereinigen.*)” [4]; 
es decir: 

El axioma VI (de elección) o AC indica que si existe un 
conjunto  𝑇𝑇 cuyos elementos son todos conjuntos distintos de 
0 y mutuamente disjuntos; su unión 𝔖𝔖𝑇𝑇 (⋃𝑇𝑇) incluirá al 
menos un subconjunto 𝑆𝑆1 que contenga un solo elemento en 
común con cada elemento de 𝑇𝑇; así mismo el axioma se puede 
expresar como que siempre es posible elegir un solo elemento 
de cada elemento: 𝑀𝑀,𝑁𝑁,𝑅𝑅, . .∈ 𝑇𝑇 y combinar todos los 
elementos elegidos: 𝑚𝑚,𝑛𝑛, 𝑟𝑟, .., en un conjunto 𝑆𝑆1. 

Además indica que para asegurar la existencia de los 
conjuntos infinitos,  los axiomas anteriores requieren del 
denominado axioma VII que es el Axioma de la infinidad 
(Axiom des Unendlichen) esencialmente de Dedekind de 1888 
[10].  

Zermelo explica la prueba que realiza ese mismo año 
(1908) en el mismo número de Mathematische Annalen, vol. 
65, apenas unas páginas antes (pp. 107–128) en su trabajo 
titulado “Neuer Beweis für die Möglichkeit einer 
Wohlordnung” [11] en donde indica que: “no puede probar el 
axioma ni que lo acepten apodícticamente”; sin embargo  
indica que “La imposibilidad de demostrar… no implica la no 
validez…; ya que a toda prueba le debe presuponer principios 
no demostrados” comparando que Peano usa principios que no 
han sido demostrados; así como que el AC ha sido utilizado 
con anterioridad por otros como Dedekind, Cantor, König, 
Schoenflies y otros. 

Así mismo Zermelo enumera los teoremas que requieren 
al AC  partiendo de la equivalencia entre conjuntos disjuntos 
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mediante los siguientes teoremas en donde se utilizará la 
notación moderna de acuerdo a productos cartesianos 
infinitos, funciones y conjuntos de acuerdo a Bourbaki [12], 
de modo que cuadre con el trabajo moderno: 

 
Teorema 1 (descomposición) [11]: Si un conjunto 𝑀𝑀 puede 
descomponerse en partes disjuntas 𝐴𝐴,𝐵𝐵,𝐶𝐶, … ; entonces se 
puede determinar una correspondencia de tipo biyectiva a 
modo: 𝑀𝑀 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 de índices y de estas partes se requiere 
elegir exactamente un elemento de cada una de ellas. La 
existencia de la “función de selección”, 𝑓𝑓𝑐𝑐  que no puede 
demostrarse sin la existencia previa del AC □. 
 
Teorema 2 (producto) [11]: Para una familia de conjuntos no 
vacíos el producto cartesiano con una 𝑓𝑓𝑐𝑐  en donde para cada 
índice 𝑖𝑖, se elija un único elemento 𝑎𝑎𝑖𝑖 de cada conjunto 𝐴𝐴𝑖𝑖 de 
modo:  
 
  ∏ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 ≠ ∅ ↔ ∃𝑓𝑓𝑐𝑐: 𝐼𝐼 → ⋃ 𝐴𝐴𝑖𝑖  ∣𝑖𝑖∈𝐼𝐼 ∀𝑖𝑖 ∈ 𝐼𝐼;  𝑓𝑓𝑐𝑐(𝑖𝑖) ∈ 𝐴𝐴𝑖𝑖 
 

Que es una versión moderna del AC original □. 
 

Teorema 3 [11]: Todo conjunto puede ser bien ordenado 
(Teorema del buen orden)[3] [4] [12] que depende de la 
existencia d previa del AC□.  
 
Teorema 4  [11]: Dados dos conjuntos 𝐴𝐴 y 𝐵𝐵; tienen una 
cardinalidad: |𝐴𝐴|  ≤  |𝐵𝐵|  ∨  |𝐵𝐵|  ≤  |𝐴𝐴| ; por lo que el  
principio de comparabilidad cardinal requiere la existencia 
previa de AC□. 
 
Teorema 5  [11]: Dado un cuerpo 𝐾𝐾; un 𝐾𝐾 −
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑉𝑉 tiene una base de Hamel [13] 𝐻𝐻 
linealmente independiente y con un subespacio 𝐻𝐻  con 
elementos ℎ ∈ 𝐻𝐻, escalares 𝜆𝜆ℎ ∈ 𝐾𝐾35T36T, el conjunto finito {ℎ ∈
𝐻𝐻; 𝜆𝜆ℎ ≠ 0} < ∞25T29T y 𝑣𝑣 ∈ 𝑉𝑉 ∣  𝑣𝑣 = ∑ 𝜆𝜆ℎ · ℎℎ∈𝐻𝐻  de modo que: 
  

∀𝑉𝑉 ⊇ 𝐻𝐻 ↔ �
𝐻𝐻 𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

∀𝑣𝑣 ∈ 𝑉𝑉 → ∄[(𝜆𝜆ℎ · ℎ) ⊂ 𝐾𝐾  ]  

 
La existencia de dichas bases 𝐻𝐻 requiere la existencia previa 
de AC, al implicar la selección de representantes  
para cada clase de equivalencia de la relación lineal □. 
 
Teorema 6  [11]: 
Dada una función suprayectiva 𝑓𝑓: [𝐴𝐴 → 𝐵𝐵] y su inversa  𝑓𝑓−1:  
 𝑓𝑓−1({𝑏𝑏})∣{a𝜖𝜖𝜖𝜖:𝐹𝐹(𝑎𝑎) = 𝑏𝑏} → 𝑓𝑓−1({𝑏𝑏} ≠ 0) ∣ ∀𝑏𝑏𝜖𝜖𝜖𝜖;  su 
inversa por la derecha 𝑔𝑔(𝑏𝑏) será: 𝑔𝑔(𝑏𝑏) ∈ 𝑓𝑓−1({𝑏𝑏}) ∣ ∀𝑏𝑏𝜖𝜖𝜖𝜖 
en donde se elige un único elemento de cada uno  𝑔𝑔(𝑏𝑏):  
𝑔𝑔:𝐵𝐵 → 𝐴𝐴 ∣ 𝑔𝑔(𝑏𝑏)𝜖𝜖𝑓𝑓−1({𝑏𝑏}); con los elementos anteriores  se 
generaliza que: 
 
[∀𝑓𝑓:𝐴𝐴 → 𝐵𝐵] → ∃𝑔𝑔:𝐵𝐵 → 𝐴𝐴 ∣ 𝑓𝑓�𝑔𝑔(𝑏𝑏)� = 𝑏𝑏;  ∀𝑏𝑏𝑏𝑏𝐵𝐵 
 
Por lo que para que toda función suprayectiva con admisión de 
función inversa por la derecha elija para cada elemento del 
codominio un elemento correspondiente del dominio, requiere 
de la existencia de AC □ . 
 
Teorema 7  [11]: Existen soluciones discontinuas de la 
ecuación funcional aditiva: 

 𝑓𝑓(𝑥𝑥 +  𝑦𝑦)  =  𝑓𝑓(𝑥𝑥)  +  𝑓𝑓(𝑦𝑦);  Hamel [13] demostró la 
existencia de tales soluciones asumiendo que el continuo  
puede ser bien ordenado requiriendo la existencia de AC. Esta 
construcción requiere el Axioma de Elección□. 
 

La existencia de estas soluciones requiere una base de 
Hamel 𝐻𝐻 [13] de ℝ como espacio vectorial 𝑉𝑉 sobre ℚ cuya 
construcción requiere la existencia del AC. 

Su trabajo termina coincidiendo con Poincaré justificando 
la necesidad de existencias del AC. 

Fraenkel 1922 aborda la independencia del AC [5] del resto 
de los axiomas propuestos por Zermelo [4] [11] que lo usa 
como requisito existencial para la demostración del “buen 
orden” y es gracias a su aportación que AC es conocido como 
Zermelo-Fraenkel (ZFC) [5]. 

 
Definición 1. 
Frege define los  urelementos [14] y Fraenkel los usa en su 

trabajo [5] para demostrar la independencia del AC como 
objetos del dominio que no tiene elementos y dichos objetos 
no son conjuntos; sin embargo pueden formar parte de 
conjuntos □. 

 
Definición 2. 
Fraenkel define celda [5] como un par no-ordenado de 

urelementos de la forma {𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛} donde: 
  
{𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛} ∣ ∀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 → (𝐴𝐴) = �{𝑎𝑎1, 𝑏𝑏1}, {𝑎𝑎2, 𝑏𝑏2}, … � ∣ 𝐴𝐴 

→ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑□.  
 
Definición 3.  
Fraenkel implícitamente describe un “sistema generado” 

como el menor universo 𝑈𝑈 mediante sus objetos iniciales [5]: 
∅, 𝑍𝑍0 = �0, {0}, �{0}�, … �  𝑦𝑦 𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴; así 
mismo para todos los conjuntos derivados de la función finita 
es aplicable cualquiera de los axiomas II–V de Zermelo [11] 
dentro del universo 𝑈𝑈de Fraenkel [5] □. 
 
Definición 4. 
La simetría es el proceso de permutación entre los dos 
urelementos de una celda; el proceso puede dejar invariante a 
algunos subconjuntos; por lo que no puede existir una función 
de elección sobre el conjunto de celdas, ya que cualquier 
elección sería destruida por tal permutación de acuerdo a 
Fraenkel [5] □. 
 

Con base en el trabajo previamente comentado de Zermelo 
y las definiciones anteriores modernizadas en lenguaje por 
Fraenkel se propone la siguiente descripción moderna para el 
axioma de elección Zermelo-Fraenkel (AC o ZFC) agregando 
nuevas definiciones.  

 
Definición 5 
De acuerdo a la definición 1 de urelementos se considera 

una familia de celdas descrita en la definición 2 de tipo A 
(definición 3) que trabajará sobre una familia numerable de 
conjuntos no vacíos {𝐶𝐶𝐶𝐶} = {𝑎𝑎𝑛𝑛 , 𝑏𝑏𝑛𝑛} ∣ ∀𝑛𝑛 ∈ ℕ; {𝐶𝐶𝐶𝐶} ≠ 0 y 
que de acuerdo a la definición 1 el par {𝑎𝑎𝑛𝑛 , 𝑏𝑏𝑛𝑛} →
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑;  𝑎𝑎𝑛𝑛 ≠ 𝑏𝑏𝑛𝑛□. 

Con base en la definición 5 respecto a  {𝐶𝐶𝐶𝐶} y sus 
urelementos 𝑎𝑎𝑛𝑛 ≠ 𝑏𝑏𝑛𝑛; una familia A del tipo de la definición 2 
será: 
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𝐴𝐴 = {𝐶𝐶𝐶𝐶:𝑛𝑛 ∈ ℕ}    (1) 

 
Definición 6.   
Sea I un conjunto índice y utilizando la definición 5 de 

{𝐶𝐶𝐶𝐶}; una celda y usando (1) para una familia de conjuntos  
𝐴𝐴 = (𝐴𝐴𝑖𝑖)𝑖𝑖∈𝐼𝐼  la función de elección 𝑓𝑓𝑐𝑐 (choice function) se 
define como el universo: 

 
𝑓𝑓𝑐𝑐: 𝐼𝐼 → ⋃ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 ∣  ∀𝑖𝑖 ∈ 𝐼𝐼; 𝑓𝑓(𝑖𝑖) ∈ 𝐴𝐴𝑖𝑖 29T   (2) 

 
Así mismo: 
 

𝑓𝑓𝑐𝑐:𝐴𝐴 → ⋃𝐴𝐴 ∣ 𝑓𝑓(𝐶𝐶𝐶𝐶) ∈ 𝐶𝐶𝐶𝐶 = {𝑎𝑎𝑛𝑛 , 𝑏𝑏𝑛𝑛},∀𝑛𝑛 ∈ ℕ   (3) 
 
 
La función de elección (2) basada en Fraenkel [5] puede 

ser modernizada como un producto cartesiano: 
 

𝑓𝑓𝑐𝑐 ∈ ∏ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼      (4) 
□ 
 
Proposición 1. 
Una  función de elección 𝑓𝑓𝑐𝑐 (2),(4) cumple las 

características de función moderna al contar con: dominio 𝐼𝐼, 
codominio ⋃ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 , imagen 𝑓𝑓𝑐𝑐[𝐼𝐼] ⊆ ⋃ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼  y la regla de 
correspondencia no ambigua 𝑖𝑖 ↦ 𝑓𝑓𝑐𝑐(𝑖𝑖) ∣ 𝑓𝑓𝑐𝑐(𝑖𝑖)  ∈ 𝐴𝐴𝑖𝑖.  

Así mismo satisface las condiciones de unicidad funcional: 
(𝑖𝑖, 𝑥𝑥) ∈ 𝑓𝑓𝑐𝑐 ∧ (𝑖𝑖, 𝑦𝑦) ∈ 𝑓𝑓𝑐𝑐 → 𝑥𝑥 = 𝑦𝑦; en donde 𝑓𝑓𝑐𝑐(𝑖𝑖) es el único 
elemento de 𝐴𝐴𝑖𝑖 emparejado con 𝑖𝑖 □. 

 
Demostración. 
Utilizando (4) a modo producto cartesiano donde la 

función es un subconjunto:  𝑓𝑓𝑐𝑐 ⊆ 𝐼𝐼 × ⋃ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 ; implica como 
regla que: 𝑓𝑓𝑐𝑐: 𝐼𝐼 → ⋃ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼  c. 

La condición funcional exige la unicidad que de acuerdo a 
Bourbaki [12] debe cumplir que: ((∀𝑖𝑖 ∈ 𝐼𝐼), 𝑓𝑓(𝑖𝑖)) ∈ 𝐼𝐼𝐴𝐴𝑖𝑖; es 
decir un único para (𝑖𝑖, 𝑓𝑓(𝑖𝑖) ∈ 𝑓𝑓); es decir cómo se postuló en 
la proposición 1: (𝑖𝑖, 𝑥𝑥) ∈ 𝑓𝑓 ∧ (𝑖𝑖,𝑦𝑦) ∈ 𝑓𝑓 → 𝑥𝑥 = 𝑦𝑦, con lo cual 
la función de elección 𝑓𝑓𝑐𝑐 (2) (4) cumple con la definición de 
relación unívoca. 

Con respecto al dominio 𝐼𝐼, dada la función  𝑓𝑓: 𝐼𝐼 → ⋃ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 ; 
no puede existir un índice sin valor, ni valores fuera de 𝐼𝐼.  

Por otro lado el codominio se encuentra implícita en un 
producto cartesiano como el expresado en (2) (3). 

La imagen implica que: 𝑓𝑓𝑐𝑐(𝑖𝑖) ∈ 𝐴𝐴𝑖𝑖 ⊆ ⋃ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 → 𝑖𝑖𝑖𝑖(𝑓𝑓𝑐𝑐) =
𝑓𝑓𝑐𝑐[𝐼𝐼] ⊆ ⋃ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 . 

La regla de correspondencia no ambigua 𝑖𝑖 ↦ 𝑓𝑓𝑐𝑐(𝑖𝑖) ∣
𝑓𝑓𝑐𝑐(𝑖𝑖)  ∈ 𝐴𝐴𝑖𝑖 contiene el conjunto de pares ordenados: 𝑓𝑓𝑐𝑐 =
{(𝑖𝑖, 𝑓𝑓𝑐𝑐(𝑖𝑖))} ∣ 𝑖𝑖 ∈ 𝐼𝐼 que de acuerdo a lo anterior es una función 
y no una relación ∎. 

 
Demostración 2  (por reducción al absurdo). 
No puede existir una función de elección de un objeto 

elegible y que por el contrario se trata de una relación pero que 
sea simultáneamente de acuerdo a (4) un elemento del 
producto cartesiano; expresado en terminología de Bourbaki 
[12]: ∏ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 = {𝑓𝑓: 𝐼𝐼 → ⋃ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 } ∣ ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑓𝑓(𝑖𝑖)  ∈ 𝐴𝐴𝑖𝑖; es decir 
cada elemento del producto es una función y no una relación. 

Contradiciendo lo anterior sea 𝑊𝑊 ∈ ∏ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼  un objeto 
elegible en (𝐴𝐴𝑖𝑖)𝑖𝑖∈𝐼𝐼 tal que no es función; si no más bien una 
relación, lo cual implica al menos un índice con dos imágenes 

distintas, se deduce que: ∃𝑖𝑖0 ∈ 𝐼𝐼,∃𝑥𝑥 ≠ 𝑦𝑦 → [(𝑖𝑖0, 𝑥𝑥) ∈ 𝑊𝑊 ∧
(𝑖𝑖0,𝑦𝑦) ∈ 𝑊𝑊];  sustituyendo  𝑓𝑓𝑐𝑐 por 𝑊𝑊 en (4):  𝑊𝑊 ∈ ∏ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼   
implicará que se puede sustituir en (2): 𝑊𝑊: 𝐼𝐼 → ⋃ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 ∣  ∀𝑖𝑖 ∈
𝐼𝐼;𝑊𝑊(𝑖𝑖) ∈ 𝐴𝐴𝑖𝑖, que implica la existencia de un único elemento 
𝑥𝑥 para cada 𝑖𝑖 ∈ 𝐼𝐼 → ∃𝑥𝑥 ∣ (𝑖𝑖, 𝑥𝑥) ∈ 𝑊𝑊. 
 ∴  ∀ 𝑖𝑖 ∈ 𝐼𝐼 → ∄𝑥𝑥 ∣ (𝑖𝑖, 𝑥𝑥) ∈ 𝑊𝑊;  𝑖𝑖0,∈ 𝐼𝐼 → ∄𝑥𝑥 ∣ (𝑖𝑖0, 𝑥𝑥) ∈ 𝑊𝑊. 
Dada la hipótesis de que no podía ser función 𝑓𝑓𝑐𝑐 se tienen dos 
resultados distintos; lo que contradice la unicidad ∎ 
 

Escolio. 
Por lo anterior demostrado en dos formas distintas se 

concluye que cualquier función de elección 𝑓𝑓𝑐𝑐 y por 
consecuencia el axioma de elección que hace uso de ella 
cumple las características modernas de función.  

  
Definición 7 
Con base en la definición 5 y 6 se puede generalizar que 

todo conjunto con índice 𝐼𝐼 de una familia 𝐴𝐴 de conjuntos 
indexadas por la misma  𝐼𝐼; se puede formar una función 𝐴𝐴: 𝐼𝐼 
que asigna cada índice un conjunto □. 

 
Definición 8 
Utilizando las definiciones 5,6 y 7, (1) y (3) el Axioma de 

elección AC de Fraenkel [5] estructuradamente puede ser 
expresada como: 

 
∀𝐼𝐼 ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∀(𝐴𝐴𝑖𝑖)𝑖𝑖∈𝐼𝐼: 𝐼𝐼 → [(∀𝑖𝑖 ∈ 𝐼𝐼), (𝐴𝐴𝑖𝑖 ≠ 0)] ⇒
[∃𝑓𝑓: 𝐼𝐼 → ⋃ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 ] ∣ ∀𝑖𝑖 ∈ 𝐼𝐼; 𝑓𝑓(𝑖𝑖) ∈ 𝐴𝐴𝑖𝑖                         (5) 
 
La ecuación (5) basada en Fraenkel [5] puede ser 

modernizada como un producto cartesiano que indique una 
función de elección (2) sobre una familia: 

 
∀𝐼𝐼 ∈ ∀(𝐴𝐴𝑖𝑖)𝑖𝑖∈𝐼𝐼 → �[(∀𝑖𝑖 ∈ 𝐼𝐼), (𝐴𝐴𝑖𝑖 ≠ 0)] ⇒ ∏ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 ≠ 0� ∣
∏ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 : = {𝑓𝑓: 𝐼𝐼 → ⋃ 𝐴𝐴𝑖𝑖}𝑖𝑖∈𝐼𝐼 , 𝑓𝑓(𝑖𝑖) ∈ 𝐴𝐴𝑖𝑖 ,∀𝑖𝑖 ∈ 𝐼𝐼                   (6) 
□. 
 
Cabe mencionar que Fraenkel no utiliza en su trabajo [5] 

el AC con cuantificadores sobre familias en (3) o (𝐴𝐴𝑖𝑖)𝑖𝑖∈𝐼𝐼 (5); 
mucho menos con notación de producto como en (4) o ∏ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼  
(6), el cual está basado en Bourbaki [12].  Fraenkel [6]  acepta 
el axioma VI de Zermelo [5] [11] respecto a la familia de 
conjuntos no vacíos disjuntos donde un conjunto contiene 
exactamente un elemento de cada uno y genera las 
definiciones 1- 4. De igual forma Fraenkel [5] no hace una 
demostración de la función de elección en términos de función 
modernos. 

Con lo anterior se ha modernizado en dos versiones el ZFC 
o AC. 

La ecuación 3 también indica que una función de elección 
𝑓𝑓(𝐶𝐶𝐶𝐶) de acuerdo a Fraenkel [5] en el dominio 𝐴𝐴 
independiente del “buen orden“ sobre los elementos de cada 
celda. Entonces: 

 
∃𝑓𝑓(𝐶𝐶𝐶𝐶) = 𝑎𝑎𝑛𝑛 ∨ 𝑏𝑏𝑛𝑛  ∣ 𝑛𝑛 ∈ ℕ     (7) 

 
La función de elección 𝑓𝑓(𝐶𝐶𝐶𝐶) es una instancia  misma del 

AC que permite la existencia del mismo axioma de elección al 
ser  {𝐶𝐶𝐶𝐶} una familia numerable de conjuntos nos vacíos 
indicado en la definición 5,  por lo que con base a la definición 
2 y ecuación 1 una familia infinita numerable -pares de 
calcetines de Rusell- [5] es: 
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    ∃𝐴𝐴 = { {𝑎𝑎1, 𝑏𝑏1}, {𝑎𝑎2, 𝑏𝑏2}, … }       (8) 
De acuerdo a Fraenkel [5] serían indistinguibles entre sí, al 

no establecer un criterio externo a menos que se asuma la 
existencia del 𝐴𝐴𝐴𝐴 que cumpla con (2) y (3). 

 
Axioma 1 
Utilizando la definición 3, el sistema generado puede ser 

descrito ahora un universo generado modernizando el trabajo 
de Fraenkel [5]. 

 Sea 𝑈𝑈 el menor conjunto cerrado que cumple los 
axiomas de Zermelo del “buen orden” [11] II-V 
(({∅},separación, pares, unión), así como la definición del 
conjunto potencia que contiene a: ∅ ∈ 𝑈𝑈, 𝑍𝑍0 ∈ 𝑈𝑈 (como un 
centro que contiene a {0,{0},{{0}},…} ) y una familia de 
celdas 𝐴𝐴𝑖𝑖 como la descrita en la definición 5 y en (1) donde   
𝐴𝐴 = {𝐶𝐶𝐶𝐶:𝑛𝑛 ∈ ℕ} ∈ 𝑈𝑈.  

El sistema del AC bajo la descripción de Fraenkel [5] tiene 
simetrías en las celdas que es implícitamente un  moderno  
“automorfismo de estructuras sobre un objeto algebraico” de 
acuerdo al trabajo de  Galois de 1832 [15] donde describe que 
la  simetría es una permutación del conjunto raíces respetando 
la estructura algebraica generando grupos de automorfismos 
sobre un conjunto base y que posteriormente formalizó Klein 
en 1872 [16] en donde utiliza el concepto anterior de 
automorfismo del universo 𝑈𝑈, además de las permutaciones de 
objetos (como lo elegibles) que preservan una estructura del 
universo generado 𝑈𝑈 y que da clasificación a una geometría 
con base a sus transformaciones [16] (permutaciones) sobre 
objetos definibles llamados invariantes sobre los grupos de 
transformaciones□.  

 
Definición 9 
Modernizando la definición 4 (simetrías) de Fraenkel [5] 

∀𝑛𝑛 ∈ ℕ será una permutación elemental en 𝑈𝑈 de los 
urelementos:  𝜎𝜎𝑛𝑛(𝑎𝑎𝑛𝑛) = 𝑏𝑏𝑛𝑛 ,𝜎𝜎𝑛𝑛(𝑏𝑏𝑛𝑛) = 𝑎𝑎𝑛𝑛 ∣ ∀𝑥𝑥 → 𝜎𝜎𝑛𝑛(𝑥𝑥) = 𝑥𝑥   
extendiéndose de forma inductiva a cada conjunto del 
universo 𝑈𝑈 de forma: 𝜎𝜎𝑛𝑛(𝑥𝑥) = {𝜎𝜎𝑛𝑛(𝑥𝑥): 𝑥𝑥 ∈ 𝑋𝑋}□. 
 

Definición 10 
Sea 𝐺𝐺 el grupo generado por todo 𝜎𝜎𝑛𝑛 que actúa en 𝑈𝑈:  

𝐺𝐺 = 〈𝜎𝜎𝑛𝑛〉 ∣ 𝑛𝑛 ∈ ℕ;𝑔𝑔 ⋅ 𝑋𝑋 = 𝑔𝑔(𝑋𝑋) □. 
 
Definición 11 
Un conjunto 𝑋𝑋 ∈ 𝑈𝑈 tiene invariancia bajo simetrías  sobre 

una permutación sobre los urelementos de la definición 9 𝜎𝜎𝑛𝑛 
si 𝜎𝜎𝑛𝑛(𝑋𝑋) = 𝑋𝑋 e invariante sobre la definición 10 de 𝐺𝐺 si  
𝑔𝑔(𝑋𝑋) = 𝑋𝑋 ∣ ∀𝑔𝑔 → 𝑔𝑔 ∈ 𝐺𝐺 □.   

 
Definición 12 
Sea 𝐹𝐹 un conjunto finito. Un conjunto 𝑋𝑋 ∈ 𝑈𝑈 tiene baja 

invariancia en simetrías si  ∃𝐹𝐹 ⊂ ℕ ∣ 𝜎𝜎𝑛𝑛(𝑋𝑋) = 𝑋𝑋 ∣ ∀𝑛𝑛 ∉ 𝐹𝐹; 
por lo que un reducido número de celdas podrían ser 
invariantes, para el resto 𝑋𝑋 no encuentra diferencia  𝑎𝑎𝑛𝑛 ∨  𝑏𝑏𝑛𝑛□. 

 
Axioma 2 
Fraenkel [5] indica que el trabajo de Zermelo [11] tiene 

“propiedad definida” cuando describe que un conjunto 
definido es construible mediante un número finito de 
parámetros y aplicaciones (funciones) finitas de los axiomas. 

De acuerdo a las definiciones anteriores que se han venido 
describiendo, se puede modernizar lo anterior mediante una  
estructura para la simetría de conjuntos definibles en donde  

todo conjunto definible sobre 𝑈𝑈 (axioma 1) para un número 
finito de parámetros bajo las definiciones 10 y 12 tendrá una 
baja invariancia con los elementos de la definición 9 bajo 𝐺𝐺 de 
la definición 10;  por lo que 𝑋𝑋 ∈ 𝑈𝑈 → ∃𝐹𝐹 ⊂ ℕ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∣ ∀n ∉
F,𝜎𝜎𝑛𝑛(𝑋𝑋) = 𝑋𝑋. 

Un comentario interesante respecto al trabajo de Fraenkel 
[5] es que si bien , logra generar un modelo matemático  
basado en los conceptos que hemos modernizado en esta 
sección de: urelementos, celdas, sistema generado y simetrías, 
en donde no existe una función de elección para una familia 
numerable de pares indistinguibles, se ha logrado actualizar 
mediante las definiciones y axiomas propuestos. Así mismo, 
coincidiendo con Fraenkel [5] el AC modernizado logra ser 
independiente del resto de axiomas de Zermelo [11] desde el 
concepto de propiedad definida□.      

III. CIFDQS (COUNTABLE INFINITE FAMILY OF DISCRETE 
QUANTUM STATES) 

Definición 13 
Utilizando la estructura moderna de Halmos [17] de 

acuerdo a Neumann en su trabajo Mathematische Grundlagen 
der Quantenmechanik de 1932 [18] un espacio vectorial 
complejo de Hilbert ℋ existe si cuenta con una aplicación 
(función) denominada producto interno Hermitiano [17] 
descrito por 〈𝑥𝑥,𝑦𝑦〉 = 〈𝑥𝑥,𝑦𝑦〉������� de Charles Hermite “Sur quelques 
applications des fonctions elliptiques” [19] de 1856  en donde 
describe sus propiedades como el conjugado complejo en pares 
ordenados, simetría conjugada , positividad sobre ℂ y la noción 
implícita de sesquilinealidad, mismas con las que cuenta ℋ.     

 
〈. , . 〉:ℋ × ℋ → ℂ      (9) 

 
(9) satisface la sesquilinealidad [17] lineal. 
Para la primera entrada: 

 
∀𝜓𝜓,𝜙𝜙,𝒳𝒳 ∈ ℋ, (∀𝛼𝛼,𝛽𝛽) ∈ ℂ ∣ 

                          〈𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽,𝒳𝒳〉 = 𝛼𝛼〈𝜓𝜓,𝒳𝒳〉 + 𝛽𝛽〈 𝜙𝜙,𝒳𝒳〉      (10) 
 
Y para la segunda entrada su conjugado-lineal [17]: 
 
      〈𝜓𝜓,𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽〉 = 𝛼𝛼�〈 𝜓𝜓,𝜙𝜙〉 + 𝛽̅𝛽〈𝜓𝜓,𝒳𝒳〉    (11) 
 
(9) satisface la Hermiticidad [17] mediante: 
  
         〈𝜓𝜓,𝜙𝜙〉 = 〈 𝜙𝜙,𝜓𝜓〉��������        (12) 
 
(9) Cumple con la positividad [17] debido a que:  
 

      〈𝜓𝜓,𝜓𝜓〉 ≥ 0; 〈𝜓𝜓,𝜓𝜓〉 = 0 ↔  𝜓𝜓 = 0            (13) 
 
Así mismo (9) tiene completitud al ser:  
 

  ‖𝜓𝜓‖ = �〈𝜓𝜓,𝜓𝜓〉            (14) 
 
Las ecuaciones (10)-(14) describen que ℋ(9) de acuerdo a 

Halmos como un espacio vectorial normado completo con 
producto interno Hermítico y completo con respecto a su 
norma inducida [17]  o lo que es conocido como la 
convergencia de sucesiones de Cauchy en ℋ [17] □.  

Por otro lado Neumann indica que el estado físico de un 
sistema cuántico se representa por un vector denominado 
“rayo” en un espacio de Hilbert complejo [18]; por lo que para 
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el desarrollo cuántico del trabajo solo se usará el espacio de 
Hilbert en ℂ y no solamente ℝ [20]. 
 

Definición 14 
Un estado cuántico puro es un vector 𝜓𝜓 donde: 
 

   𝜓𝜓 ∈ ℋ ∣ ‖𝜓𝜓‖ = 1             (15) 
 

En mecánica cuántica dos vectores (𝜓𝜓,𝜙𝜙 ∈ ℋ) que difieren 
por un factor complejo de módulo 1 representan el mismo 
estado físico si [20]: 

 
𝜙𝜙 = 𝑒𝑒𝑖𝑖𝑖𝑖𝜓𝜓 ∣ 𝜃𝜃 ∈ ℝ        (16) 

 
De acuerdo a Neumann [18] el estado físico real se 

denomina rayo cuántico 𝜓𝜓  de acuerdo a Moretti [20]: 
 
   [𝜓𝜓] = {𝜙𝜙 ∈ ℋ}  ∣  𝜙𝜙 = 𝑒𝑒𝑖𝑖𝑖𝑖𝜓𝜓,∃𝜃𝜃 ∈ ℝ       (17) 
□ 
 
Definición 15  
Una familia contable (enumerable) al similar a la que se 

propuso en la sección anterior en la definición 5 para (𝐴𝐴𝑖𝑖)𝑖𝑖∈𝐼𝐼 
admite cualquier elemento como posibles estados cuánticos 
discretos [18] y de acuerdo a la definición 10 y 11 se puede 
describir una sucesión normalizada de vectores en un espacio 
ℋ41T similar a las familias indexadas en la definición 7 donde 𝐼𝐼 =
ℕ41T mediante la siguiente ecuación: 

  
(𝜓𝜓𝑛𝑛)𝑛𝑛∈ℕ ⊆= ℋ ∣ ‖𝜓𝜓‖ = 1                 (18)   

□ 
 

 Definición 16 
 Debido a que el trabajo tiende a la discretización se requiere 
que (16) brinde datos medibles; es decir que la familia (18) sea 
ortonormal [21] si cumple con: 
  
        〈𝜓𝜓𝑛𝑛,𝜓𝜓𝑚𝑚〉 = 𝛿𝛿𝑛𝑛𝑛𝑛              (19) 
 
 Las estructuras de familias ortonormales [21] como (19) 
permiten obtener un par de resultados medibles con 
aplicaciones [22] en medidas concretas como el colapso formal 
como (18) en donde cada (𝜓𝜓𝑛𝑛)𝑛𝑛∈ℕ es un estado puro , [𝜓𝜓] un 
rayo y el conjunto {[(𝜓𝜓𝑛𝑛)𝑛𝑛∈ℕ]} será un sistema de estados 
posibles de un sistema desde una estructura discreta; esto es 
una familia numerable (𝐴𝐴𝑖𝑖)𝑖𝑖∈𝐼𝐼  de la definición 5, por lo que 
una familia ortonormal que cumpla con (19) será la estructura 
a trabajar para desarrollo del modelo matemático□. 
 
Definición 17 
 De acuerdo a la definición 13 y Conway [23] una base 
ortonormal o Ortho-Normal Basis (ONB) sobre un espacio ℋ41T 
(9)  que cumpla con (19)  es un conjunto con índice contable 
(enumerable) I= ℕ [24]  en un subespacio vectorial o cápsula 
lineal denominado Span [25] {𝑒𝑒𝑛𝑛} ∣ 𝑛𝑛 ∈ 𝐼𝐼 ⊆  ℋ. 
 

{𝑒𝑒𝑛𝑛} ↔ � 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜:  〈𝑒𝑒𝑛𝑛 , 𝑒𝑒𝑚𝑚〉 = 𝛿𝛿𝑛𝑛       
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆{𝑒𝑒𝑛𝑛 ∣ 𝑛𝑛 ∈ 𝐼𝐼} =  ℋ        (20) 

En espacios de Hilbert una ONB es también conocida como 
un sistema ortonormal completo o CONS (Complete 
Orthonormal System) [17].  

□ 

Definición 18 
Un operador cuántico 𝑇𝑇:ℋ → ℋ es una función lineal que 

opera en ℋ y transforma el estado; cabe mencionar que esto 
puede no necesariamente ser físico o medible y es descrito bajo 
la condición de 𝑇𝑇(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽) = 𝛼𝛼𝛼𝛼𝛼𝛼 + 𝛽𝛽𝑇𝑇𝑇𝑇 [26].   

Un operador cuántico asociado (a un observable) 𝐴𝐴 es un 
operador cuántico autoadjunto que representa una 
observación física de magnitud como la posición cuántica, 
momento o spin de forma que 〈𝐴𝐴𝐴𝐴,𝜙𝜙〉 = 〈𝜓𝜓,𝐴𝐴𝐴𝐴〉 [26]. 

Un operador cuántico autoadjunto asociado (a un 
observable) 𝐴𝐴† permite que los valores en la medición física 
denominados espectro sean valores en ℝ mediante la 
igualación del operador cuántico asociado a un observable 𝐴𝐴 
al operador cuántico autoadjunto; 𝐴𝐴 = 𝐴𝐴† [26]. 𝐴𝐴† es de tipo 
discreto cuando es numerable (contable), no tiene parte 
continua y cada 𝜆𝜆1 cuenta con un valor y un espacio individual 
de la forma: 𝐴𝐴†𝜓𝜓𝑛𝑛 = 𝜆𝜆𝑛𝑛𝜓𝜓𝑛𝑛. Físicamente en los aparatos de 
medición los 𝐴𝐴†con espectro discreto permiten obtener 
magnitudes ℝ seleccionando solo los ortonormales; como 
sucede con el número de partículas, el spin 𝑆𝑆𝑧𝑧 o los estados 
cuánticos discretos de un átomo [26] □. 

 
Un operador cuántico compacto 𝐾𝐾 transforma conjuntos 

que operan en ℋ a conjuntos compactos ℝ que contienen un 
espectro de medición de estados {𝜓𝜓𝑛𝑛1,𝜓𝜓𝑛𝑛2,𝜓𝜓𝑛𝑛3, … . } discreto; 
lo cual para el modelo permite que el espectro sea 
matemáticamente contable (numerable); sin embargo esto no 
representa una observación física, ni implica que siempre sea 
autoadjunto [26], por lo que para la literatura en física cuántica 
no es utilizado.  

 
Definición 19 
Dado un operador cuántico que mapea (función) a un 

espacio de Hilbert complejo 𝐴𝐴:ℋ; se define 𝐴𝐴† como el 
autoadjunto 𝐴𝐴 = 𝐴𝐴† que mapea a ℋ [26] de la forma: 

 
𝐴𝐴† ∶ ℋ → ℋ      (21) 

□ 
 
Definición 20 
De acuerdo a la definición 17, el espectro discreto contable 

del modelo será:  𝜎𝜎(𝐴𝐴†) = {𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, … } que es el conjunto de 
resultados de la medición del autoadjunto 𝐴𝐴† ONB donde: 

 
 𝐴𝐴†𝜓𝜓𝑛𝑛 = 𝜆𝜆𝑛𝑛𝜓𝜓𝑛𝑛 ↔ [𝜓𝜓𝑛𝑛 →  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜]  (22)  
 
Así mismo existe una independencia física entre los estados 

cuánticos que aplica para  ∀𝑛𝑛 ≠ ∀𝑚𝑚 □. 
 
Definición 21 
Utilizando (21); sea ℋ un espacio de Hilbert complejo, ℕ 

un conjunto contable ℕ = {𝑛𝑛1,𝑛𝑛2,𝑛𝑛3, … } con indexación [24] 
para estados de elección cuánticos posibles 𝜓𝜓𝑛𝑛 de una familia 
Ψ denotada por la función de elección (4) (7): 

 
  Ψ:ℕ → ℋ       (23)  

□ 
 
Definición 22 
Con base en las definiciones 15-21 surge el concepto  de 

“familias infinitas contables de estados cuánticos discretos” o 
CIFDQS (Countable Infinite Family of Discrete Quantum 
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States) como una familia que tiene una norma del espacio ℋ 
‖Ψ(𝑛𝑛)‖ = 1  que contiene vectores Ψ(𝑛𝑛) (rayos cuánticos) 
que representan los estados discretos cuánticos posibles 
elegibles por el axioma de elección (6) y la función Ψ de 
vectores 𝑛𝑛 con imagen 𝜓𝜓𝑛𝑛 que representan una medición 
mediante un operador cuántico autoadjunto asociado a un 
observable 𝐴𝐴 = 𝐴𝐴† discreto en donde la familia es un conjunto 
de elementos contables de acuerdo a (21) que cumple con: 

 
[𝐴𝐴 = 𝐴𝐴† ∶ ℋ →  Ψ:ℕ → ℋ] ∣ 

∀𝑛𝑛𝑛𝑛ℕ

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁: ‖Ψ(𝑛𝑛)‖ = 1                            
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷:∀𝐴𝐴†Ψ(𝑛𝑛) ∣ 𝜓𝜓𝑛𝑛 → 𝑂𝑂𝑂𝑂𝑂𝑂                  
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: (𝜓𝜓𝑛𝑛)𝑛𝑛∈ℕ ∣ 𝜓𝜓𝑛𝑛 ≔ Ψ(𝑛𝑛).𝐷𝐷𝐷𝐷𝐷𝐷 7    
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: ∀𝑛𝑛 ≠ ∀𝑚𝑚 → [𝜓𝜓𝑛𝑛] ≠ [𝜓𝜓𝑚𝑚]
(𝜓𝜓𝑛𝑛)𝑛𝑛∈ℕ ⊆  ℋ                                                     
 𝐴𝐴 = 𝐴𝐴† → 𝐴𝐴†𝜓𝜓𝑛𝑛 = 𝜆𝜆𝑛𝑛𝜓𝜓𝑛𝑛 ≠ 0                         

      (24)  

  
La ecuación (23) es un CIFDQS normalizada  y 

discretizada utilizando rayos [18] que une (al ser aplicable) el 
axioma-función de elección de  [5].con  la física cuántica en 
espacios de Hilbert [8] al poder realizar mediciones discretas 
de observaciones reales  [26] para los contables infinitos 
estados cuánticos posibles en donde 
𝐴𝐴 = 𝐴𝐴† → 𝐴𝐴†𝜓𝜓𝑛𝑛 = 𝜆𝜆𝑛𝑛𝜓𝜓𝑛𝑛 ≠ 0 □. 

IV. COLAPSO FORMAL COMO SELECCIÓN SLE-GRW 
Continuando con la definición 13 sección anterior se dice 

que un sistema físico trabaja como un vector [18]  𝜓𝜓𝑛𝑛 ∈ ℋque 
contiene los estados infinitos contables y las magnitudes 
observables discretas posibles con sus respectivos espectros  
𝐴𝐴†𝜓𝜓𝑛𝑛 = 𝜆𝜆𝑛𝑛𝜓𝜓𝑛𝑛 ⊆ ℋ. 

De acuerdo a la física cuántica un sistema no observado 
puede encontrarse en superposición de Heisenberg [27] de 
infinitos estados cuánticos posibles y en el momento de  
observación para medirlo se genera un fenómeno denominado  
“colapso de estado de la función de onda” de Schrödinger [28]; 
es decir el cambio instantáneo (reducción) hacia uno solo de 
los estados denominado eigenestado 𝜓𝜓𝑘𝑘 [18] descrito como la 
transición [18]: 

𝜓𝜓 → 𝜓𝜓𝑘𝑘          (25)   
 
Algunas teorías indican que el colapso [27][18] sucede por 

las amplitudes de la superposición [27]inicial; lo cual apunta a 
un carácter no dinámico del proceso que ha generado distintas 
interpretaciones y teorías para formalizar su comportamiento. 

Una de los modelos de colapso físico medible  u objetivo 
[18] más aceptados es la “teoría dinámica unificada para 
sistemas microscópicos y macroscópicos” o  Unified dynamics 
for microscopic and macroscopic systems  (GRW) de G. C. 
Ghirardi, A. Rimini y T. Weber de 1986 [29]  que propone al  
colapso no como una abstracción matemática; sino como un 
fenómeno físico real medible estructurado por saltos 
espontáneos del estado cuántico[30]. Así mismo, trabajos 
recientes como el modelo de Leckey y Flitney de 2025 
proponen la medición discreta del colapso espontáneo de una 
función de onda [31]. 

 
 
Definición 23 
El principio de superposición [27] como se mencionó 

describe la simultaneidad sistémica de múltiples 
configuraciones posibles expresada mediante la estructura 

lineal del conjunto de estados {𝜓𝜓𝑛𝑛} sobre un espacio ℋcomo 
la ecuación (21) se pueden utilizar coeficientes complejos.  

Se define superposición como la sumatoria  del conjunto de 
estados cuánticos válidos de un vector rayo [18] para cada 
coeficiente 𝑐𝑐𝑛𝑛 que representa la densidad de probabilidad o 
amplitud de acuerdo a Born (1926) [32] [33] en donde el 
cuadrado del módulo indica la probabilidad de que al observar 
el sistema se encuentre en un estado donde el operador 
cuántico 𝐴𝐴† tenga el eigenestado 𝜓𝜓𝑘𝑘 [18] descrito en ( 25) 
siendo todos los estados físicos con magnitud [33] de la forma: 
 

𝜓𝜓 =  ∑ 𝑐𝑐𝑛𝑛𝜓𝜓𝑛𝑛𝑛𝑛 ∣ 〈𝜓𝜓𝑛𝑛 ,𝜓𝜓〉;  ∑ |𝑐𝑐𝑛𝑛|2 = 1 ∣𝑛𝑛 ∀𝑐𝑐𝑛𝑛 ∈ ℂ     (26) 
 

La ecuación (26) es coherente con el espectro discreto de 
la definición 22 de una familia CIFDOS en donde la familia 
contable {𝜓𝜓𝑛𝑛} ∈ ℕ  es una combinación lineal de eigenestados 
[18] normalizados que son ortogonales entre ellos mismos □. 

 
Definición 24 
Utilizando la definición 18 y 19 un operador cuántico 

autoadjunto 𝐴𝐴 = 𝐴𝐴† [26] con espectro discreto e eigenestados 
[18] normalizados como en (26), con la estructura ortonormal 
de  (22), que satisface a (22) y (19), el conjunto de estados 
cuánticos infinitos contables {𝜓𝜓𝑛𝑛} ∈ ℕ puede ser modelado 
como la sumatoria que describe la combinación lineal infinita 
de eigenestados [18] en donde ∀𝜓𝜓 ∈ ℋ. 

Se define como probabilidad de colapso a un estado 𝜓𝜓 a la 
transición (25) que contiene simultáneamente la información 
de cada valor 𝜆𝜆𝑛𝑛 del operador 𝐴𝐴† mediante la probabilidad (26) 
de que al observar un sistema; este se encuentre en un estado 
[33] donde ∀𝑐𝑐𝑛𝑛 indica la densidad con la que 𝜓𝜓 proyecta sobre 
el estado 𝜓𝜓𝑛𝑛: 

 
ℙ(𝜆𝜆𝑘𝑘) = |𝑐𝑐𝑘𝑘|2      (27)  

□ 
 
Definición 25 
Utilizando a la definición 15, 17 y la ecuación (18) existe 

una familia contable de eigenestados normalizada ONB (20) 
que satisface a (19) y CIFDOS (24). 

 Un espectro discreto es toda magnitud física medible sobre 
ℋ como la ecuación (21) con el operador 𝐴𝐴† donde  ∀𝜆𝜆𝑘𝑘 ∈ ℝ   
es un espectro que se comporta como una superposición 
discreta que satisface a (26) de la forma:  

  
𝜎𝜎(𝐴𝐴) = {𝜓𝜓𝑛𝑛 ∣ 𝑛𝑛 ∈ ℕ}       (28) 

 □ 
 
Definición 26 
Mientras la teoría y ecuación de función de onda de 

Schrödinger [28] 𝑖𝑖ℎ� 𝑑𝑑
𝑑𝑑𝑑𝑑
𝜓𝜓(𝑡𝑡) = 𝐻𝐻𝐻𝐻(𝑡𝑡) [18] es unitaria, 

continua, determinista y reversible [18]; la teoría del colapso 
estándar es discreta, no unitaria, probabilística e irreversible 
unificando (23) y (26) como: 

 
  𝜓𝜓 = ∑ 𝑐𝑐𝑛𝑛𝜓𝜓𝑛𝑛𝑛𝑛 → 𝜓𝜓𝑘𝑘 ∣ 〈𝜓𝜓𝑛𝑛 ,𝜓𝜓〉,∀𝑐𝑐𝑛𝑛 ∈ ℂ       (29) 
 

El postulado afirma que al medir  𝐴𝐴† con espectro discreto; 
se reduce (colapsa) a uno de los posibles eigenestados [18]  
cuya probabilidad está dada por (27) □. 

El estado del sistema se encuentra en función de la 
interacción de medir mediante un dispositivo macroscópico; 
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por lo que lleva a al problema de frontera cuántico-clásica en 
donde el colapso no es autónomo si no dependiente de la 
intervención, por lo que el axioma de elección [11] 
complementa el modelo. 

El colapso estándar indica que el sistema pierde 
información durante el proceso al igual que sucede con en el 
modelo de Schrödinger [28] pero con  irreversibilidad; sin 
embargo (27) el modelo de Born [33] no cuenta con un sistema 
de selección estocástica o que describa la transición de estado 
por lo que han aparecido teorías que lo explican como el 
colapso objetivo [30], historias consistentes [34], decoherencia 
ambiental [35], estado relativo [36], colapso gravitacional [37] 
y otras teorías subyacentes [38] para tratar de explicar el 
colapso de los conjuntos de ondas [39]. 

 
Definición 27 
Como se ha descrito en mecánica cuántica el colapso 

estándar formal [18] depende del acto de medir. Por otro lado 
el modelo GRW [29] propone una estructura matemática que 
describe una función de onda que presenta eventos de 
localización espontáneos o spontaneous localization events 
(SLE) [29] los cuales suceden  aleatoriamente durante el 
tiempo, afectando su localización y cuya característica 
principal es su independencia de  parámetros universales del 
observador y parámetro de localización 𝐿𝐿𝑥𝑥 que se encuentra en 
una posición aleatoria 𝑥𝑥; lo anterior coloca al modelo como 
dinámico, continuo y unitario. 

El comportamiento SLE [29] del sistema respecto al tiempo 
establece que se comporte de acuerdo a la ecuación de 
Schrödinger mediante una dinámica no continua, estocástica y 
con colapsos espontáneos de acuerdo a la ecuación: 

 
𝜓𝜓 → 𝐿𝐿𝑥𝑥𝜓𝜓

‖𝐿𝐿𝑥𝑥𝜓𝜓‖
      (30) 

 
El modelo propone que la frecuencia de salto lleva a un 

proceso de conmutación como sucede en los sistemas de 
comunicación, pero relativo al tamaño;  comportándose en baja 
frecuencia en niveles microscópicos individuales y alta 
frecuencia en los niveles macroscópicos. Lo anterior  permite 
que no se genere el problema de frontera cuántico clásico del 
colapso estándar □. 

 
Debido a que el modelo GRW [29] trabaja mediante 

colapsos espontáneos; su selección estocástica de estados 
puede ser interpretada como una CIFDQS al tratarse de un 
conjunto discreto de un colapso real (estados físicamente 
posibles)  mediante un modelo probabilístico (27) en donde a 
cada evento de colapso SLE le corresponde un índice de la 
forma 𝑘𝑘 ∈ ℕ  

 
Definición 28 
De acuerdo a la definición 27 con el modelo de transición 

de la ecuación (29) y debido a la aleatoriedad de un SLE [29], 
el modelo GRW [29] puede describirse como la siguiente 
distribución de probabilidad con 𝑘𝑘 ∈ ℕ: 

 
 𝜓𝜓 → 𝜓𝜓𝑘𝑘 ∣ k ~ℙ𝐺𝐺𝐺𝐺𝐺𝐺        (31) 

□. 
 
 
 
 

Teorema 8 
 La ecuación (31) puede ser reescrita de acuerdo a un índice 
𝑘𝑘 elegido de acuerdo a una distribución de probabilidad que  
depende del mecanismo de SLE [29] propio del modelo 
estocástico mediante la  función de colapso SLE 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺: 
 

𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺:→ Ψ → Ψ ∣ Ψ = {𝜓𝜓𝑘𝑘}, n ∈ ℕ,Ψ:ℕ → ℋ      (32) 
 
 La ecuación (32) es una función no unitaria y discontinua 
que cumple con dominio dada una familia de estados discretos 
asociados a un operador  𝐴𝐴† o descomposición relevante, con 
codominio de la familia de estados discretos bajo la regla de 
elección de elementos de la familia GRW [29] de la 
distribución □. 

 
 Demostración 

Dado un espacio discreto descrito por las ecuaciones 
similares a (21) descrito por 𝐴𝐴 = 𝐴𝐴† ∶ ℋ → ℋ, (28) 𝜎𝜎(𝐴𝐴) =
{𝜆𝜆𝑛𝑛} ∣ 𝑛𝑛 ∈ ℕ, una familia contable de eigenestados Ψ similar a 
(18) donde  𝛹𝛹 = {𝜓𝜓𝑛𝑛} ∣𝑛𝑛∈ℕ⊆ ℋ;  𝐴𝐴 𝜓𝜓𝑛𝑛 = 𝜆𝜆𝑛𝑛𝜓𝜓𝑛𝑛 ∣ ‖𝜓𝜓𝑛𝑛‖ = 1. 

Sea 𝑆𝑆 un conjunto de estados normalizados que admiten 
una descomposición discreta en la base Ψ y el colapso SLE 
GRW [29] una función que depende de la elección aleatoria 
bajo una 𝑘𝑘 (31) sustituyendo 𝑆𝑆 en (32) en donde existe: 

 
𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺:→ 𝑆𝑆 → 𝛹𝛹 ∣ 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜓𝜓) = 𝜓𝜓𝑘𝑘 ∣ 

    𝑛𝑛 ∈ ℕ,𝛹𝛹:ℕ → ℋ, 𝑘𝑘 ~ℙ𝐺𝐺𝐺𝐺𝐺𝐺 , 𝑘𝑘 ∈ ℕ         (33) 
 
 La función 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 (33) es una función bien definida de 

acuerdo a (33)  en donde ∀𝜓𝜓 ∈ 𝑆𝑆 le corresponde  de acuerdo a 
GRW [29] que utilizará un marcador de posición “⋅” para 
cualquier evento aleatorio condicionado al estado  ℙ𝐺𝐺𝐺𝐺𝐺𝐺(⋅∣
𝜓𝜓) ∈ ℕ en donde el colapso SLE [29] utiliza como elección el 
índice 𝑘𝑘 ∈ ℕ estableciendo como en (32) que 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜓𝜓) ≔ 𝜓𝜓𝑘𝑘; 
por lo que de acuerdo a (33) la función (32) cuenta con 
existencia y unicidad; es decir:   ∀𝜓𝜓 → ∃𝑘𝑘 ∈ 𝑆𝑆 ∣ 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜓𝜓) =
𝜓𝜓𝑘𝑘 y de acuerdo a la definición 23  a cada colapso real SLE  
[29] le corresponde por unicidad solamente un k .  

Debido a que cuenta con las condiciones anteriormente 
expresadas de existencia y unicidad del dominio S con su única 
imagen en 𝛹𝛹 ∎. 

Así mismo (32) es no unitaria debido a que la condición de 
una función unitaria debería ser 𝑈𝑈:ℋ → ℋ y (28) no cumple 
ya que debe ser lineal y preservar el producto interno; es decir: 
〈𝑈𝑈𝑈𝑈,𝑈𝑈𝑈𝑈〉 = 〈𝜙𝜙,𝜓𝜓〉 ∣ ∀𝜙𝜙,𝜓𝜓 ∈ ℋ. 

Simplificando el problema se asume un conjunto binario de 
estados ∃ {𝜓𝜓,𝜑𝜑} ∈ 𝑆𝑆 ∣ 𝜓𝜓 ≠ 𝜑𝜑, 𝜓𝜓 = ∑ 𝑐𝑐𝑛𝑛𝜓𝜓𝑛𝑛𝑛𝑛  , 𝜑𝜑 = ∑ 𝑐𝑐𝑛𝑛𝜓𝜓𝑛𝑛𝑛𝑛 ; 
en donde cuando transita a un colapso SLE [29] en donde 
coinciden con el mismo índice 𝑘𝑘 ∈ ℕ  de (33) a ambos: 
𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜓𝜓) = 𝜓𝜓𝑘𝑘1  ,𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜑𝜑) = 𝜓𝜓𝑘𝑘2 ∣ 𝑘𝑘1 = 𝑘𝑘2 → 〈𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜓𝜓) ∧
𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜑𝜑)〉 = 〈𝜓𝜓𝑘𝑘 ,𝜓𝜓𝑘𝑘〉 = 1. 

Pero como se describe el conjugado complejo [8] [17]  en: 
〈𝜓𝜓,𝜑𝜑〉 = ∑ 𝑐𝑐𝑛𝑛� 𝑑𝑑𝑛𝑛 ≠ 1 →𝑛𝑛 𝜓𝜓 ≠ 𝜑𝜑; ∴ 〈𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜓𝜓) ,𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜑𝜑)〉 ≠
〈𝜓𝜓,𝜑𝜑〉.  

Lo anterior contradice el producto interno demostrando que 
la función 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 es no unitaria ni lineal ∎. 

Por otro lado 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 es no continua respecto a la norma de 
ℋ . Nuevamente simplificando el problema se asume un 
conjunto binario que representa dos estados ortonormales 
{𝜓𝜓1,𝜓𝜓2} ∈ 𝛹𝛹 y la siguiente sucesión de estados restringida: 
𝜓𝜓(𝑛𝑛) = 𝛼𝛼𝑛𝑛𝜓𝜓1 + 𝛽𝛽𝑛𝑛𝜓𝜓2 ∣ 𝑛𝑛 ∈ ℕ, {𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛} ∈ ℂ normalizados. 
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Dado que  |𝛼𝛼𝑛𝑛|2 + |𝛽𝛽𝑛𝑛|2 = 1  ∧ 𝜓𝜓(𝑛𝑛) → 𝜓𝜓(∞) = 1

√22 (𝜓𝜓1 +
𝜓𝜓2) está en norma. 

Si la función (33) se comporta de acuerdo a SLE GRW [29], 
entonces tendrá una distribución  ℙ𝐺𝐺𝐺𝐺𝐺𝐺 pudiendo elegir 
binariamente el valor 𝑛𝑛 que domina a 𝜓𝜓𝑛𝑛:  

𝑛𝑛 �2𝑛𝑛 → 𝑘𝑘 = 1 → 𝜓𝜓1         
2𝑛𝑛 + 1 → 𝑘𝑘 = 2 → 𝜓𝜓2

→ 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺�𝜓𝜓(𝑛𝑛)� = �
𝜓𝜓1 → 2𝑛𝑛       
𝜓𝜓2 → 2𝑛𝑛 + 1.

 

La sucesión {𝜓𝜓(𝑛𝑛)} converge en ℋ; mientras que la 
sucesión de imágenes {𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺�𝜓𝜓(𝑚𝑚)�} no lo hace en norma al 
oscilar en el intervalo ‖𝜓𝜓1 − 𝜓𝜓2‖ = √22 ≠0. 

Por lo tanto la función no es continua; al existir una 
sucesión que converge, además de un límite que es distinto al 
establecido por la función y la función 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 es discontinua en 
la norma de ℋ∎ 

Por último dado el dominio 𝐷𝐷𝐷𝐷𝐷𝐷(𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺) = 𝑆𝑆 y un conjunto 
de estados admisibles a ser discretizados de la familia de la 
ecuación (21) de modo: 𝛹𝛹:𝐴𝐴 = 𝐴𝐴†; su codominio será 
entonces el conjunto: 𝐶𝐶𝐶𝐶𝐶𝐶(𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺) = 𝛹𝛹 = {𝜓𝜓𝑘𝑘: 𝑘𝑘 ∈ ℕ}; es 
decir la familia discretizada de estados eigenestados generada 
por el espectro discreto de A o la descomposición modular de 
la función ∎. 

Como consecuencia la regla de correspondencia de la 
función será la ecuación (31) que define la regla de elección 
estocástica de la familia discreta 𝛹𝛹∎. 

 
Escolio 
𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 (33) es una función no unitaria y discontinua de 

colapso de acuerdo a SLE GRW [29] que toma como entrada 
un estado discretizado 𝜓𝜓𝑛𝑛 del conjunto de  superposiciones de 
una familia 𝛹𝛹 que de acuerdo a la distribución SLE GRW [29] 
a modo axioma de elección [11] [5] elige un elemento de la 
familia 𝛹𝛹 que produce el colapso cuántico a un estado  𝜓𝜓𝑘𝑘 ∎.   

 
Definición 29 

 Sea ℱ la colección [18] de todas las familias discretas 
contables (18) de estados posibles bajo un operador  𝐴𝐴†, una 
función Ψ(ℱ) que describe a {𝜓𝜓𝑛𝑛} y al colapso 𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺{𝜓𝜓} =
𝜓𝜓𝑘𝑘; la función que describe el colapso SLE GRW [29] de las 
familias discretas numerables de estados normalizados al que 
transitan puede ser modelado como:  
 

𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺 = ℱ → Ψ(ℱ)       (34) 
 □. 

V. MODELO MATEMÁTICO DEL COLAPSO FORMAL SLE-GRW 
COMO UNA FUNCIÓN MEDIANTE EL AXIOMA DE ELECCIÓN PARA 

CIFDQS. 
En las secciones anteriores se han descrito los módulos que 

conforman al modelo matemático.  
El modelo parte de que la proposición 1 que moderniza la 

función de elección de Zermelo-Fraenkel ha sido demostrado 
como una función y del teorema 8 en donde existe una función 
de elección para un estado de colapso formal SLE GRW [29] es 
una función demostrada. 

A continuación se desarrolla formalmente el modelo 
matemático de una función de elección que utiliza el AE de 
Zermelo-Fraenkel para explicar al colapso formal GRW  [29]  
en CIFDQS. 

 
 
 

Teorema 9 
Función de elección para el colapso formal GRW en 

CIFDQS mediante el AE Zermelo-Fraenkel. 
Dado un espacio de Hilbert complejo 𝐴𝐴:ℋ estructurado 

con un operador autoadjunto cuántico que actúa como función 
como en la definición 19: 

  
𝐴𝐴 = 𝐴𝐴† ∶ ℋ → ℋ    (35) 

 
Donde su proceso de observación de acuerdo a (35) genera  

un operador autoadjunto 𝛹𝛹 que actúa como familia contable 
posibles estados cuánticos que devuelve un espectro discreto 
como un conjunto con índice 𝑘𝑘 como en la definición 15: 

 
    𝛹𝛹 = {𝜓𝜓𝑘𝑘} ⊆ ℋ ∣ 𝑘𝑘 ∈ ℕ  (36) 
 
Sea una CIFDQS mediante la definición 24 de eigenestados 

normalizados asociados al operador autoadjunto 𝐴𝐴† (35) con 
‖𝜓𝜓𝑘𝑘‖ = 1 que de acuerdo al teorema 8 cuenta con un conjunto 
de estados normalizados que admiten una descomposición 
discreta en la base Ψ y un salto dado por la función de colapso 
SLE GRW [29].  

Sea 𝕊𝕊 el conjunto que denota todos los estados en 
superposición (26) discreta de la familia 𝛹𝛹 (36) de tipo 
CIFDQS: 

 
𝕊𝕊 = {𝜓𝜓 ∈ ℋ:𝜓𝜓} = {∑ 𝑐𝑐𝑘𝑘𝜓𝜓𝑘𝑘𝑘𝑘∈ℕ ,∑ |𝑐𝑐𝑘𝑘|2} = 1𝑘𝑘      (37) 
 

De acuerdo a las definiciones 27-29 que describen  el 
modelo de evento de localización espontánea de  GRW [29] 
asociado a un posible estado 𝜓𝜓𝑘𝑘 ∈ 𝕊𝕊; la distribución de 
probabilidad discreta (27) que describe un salto está dada por: 

 
𝑝𝑝( ⋅∣∣ 𝜓𝜓 ) ∣  ℕ → [0,1]     (38) 

 
Usando a (38) La probabilidad de colapsar GRW [29] en el 

estado 𝜓𝜓𝑘𝑘 es asignada por cada índice 𝑘𝑘 mediante: 
 

∑ 𝑝𝑝(𝑘𝑘 ∣∣ 𝜓𝜓 ) = 1𝑘𝑘∈ℕ       (39) 
 

Sea (𝕏𝕏𝜓𝜓)𝕏𝕏∈𝕊𝕊 una familia indexada por 𝕊𝕊 de subconjuntos de 
𝛹𝛹 ≠ 0 que indican los estados elegibles donde: 

 
∀𝜓𝜓 ∈ 𝕊𝕊 → 𝕏𝕏𝜓𝜓 = {𝜓𝜓𝑘𝑘} ∈ 𝛹𝛹 ∣ 𝑝𝑝(𝑘𝑘 ∣∣ 𝜓𝜓 ) > 0} ∣ 𝕏𝕏𝜓𝜓 ≠ ∅      (40) 
 

De acuerdo al Axioma de Elección de Zermelo-Fraenkel 
[3][4][5][11] y definición 6 existe una función de elección.  

Sea la función de elección 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 definida como:  
 

𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺:𝕊𝕊 → ⋃ 𝕏𝕏𝜓𝜓𝜓𝜓 ∣ ∀𝜓𝜓 ∈ 𝕊𝕊,𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜓𝜓) ∈ 𝕏𝕏𝜓𝜓   (41)   
 

La función de elección 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(41) permite obtener  bajo el 
contexto del axioma de elección AC Zermelo-Fraenkel elegir 
un único estado 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜓𝜓) para cada rayo 𝜓𝜓 [18] definido como  
un salto cuántico bajo el modelo GRW dentro de la familia 
CIFDQS 𝛹𝛹 = {𝜓𝜓𝑘𝑘}𝑘𝑘∈ℕ denotado como una función global de 
la forma: 
 

𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 ∈ ∏ 𝕏𝕏𝜓𝜓 ∣𝜓𝜓∈𝕊𝕊 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜓𝜓) ∈ 𝕏𝕏𝜓𝜓 ⊆ 𝛹𝛹       (42) 
∎ 
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Demostración 1 
(42) es una función bien definida. 
Dado el índice k (18) de los estados de superposición  

discreta 𝕊𝕊 (37); en la familia (35) existe un operador 𝐴𝐴𝑖𝑖 que 
define a la familia   𝕏𝕏𝜓𝜓 similar a (40):  

 
  𝕏𝕏𝜓𝜓 = {𝜓𝜓𝑘𝑘} ∈ 𝛹𝛹 ;  𝑝𝑝( 𝑘𝑘 ∣∣ 𝜓𝜓 ) > 0 ∣ 𝑖𝑖 = 𝜓𝜓 ∈ 𝕊𝕊,𝕏𝕏𝜓𝜓 ≠ ∅     (43) 

 
Dado el axioma de elección de la definición 8; existe una 

función de elección (7) global como en (42). 
Sea una subfamilia finita {𝜓𝜓𝑘𝑘} ⊆ 𝕊𝕊 y debido a que 𝕏𝕏𝜓𝜓 ≠

∅ → 𝑓𝑓1(𝜓𝜓1) ∈ 𝕏𝕏1. 
∴ 𝑓𝑓1 es una función de elección que aplica en {𝜓𝜓1} .     
Y por consecuencia una subfamilia 𝕊𝕊 será:  
 

 ∃𝑓𝑓𝑛𝑛 = {𝜓𝜓1, … ,𝜓𝜓𝑛𝑛} ∈ 𝕏𝕏𝜓𝜓𝑗𝑗 → Ψ     (44) 
 

Por inducción de (44) la siguiente subfamilia 𝕤𝕤 será: 
 

∃𝑓𝑓𝑛𝑛+1 = {𝜓𝜓1, … ,𝜓𝜓𝑛𝑛+1} ∈ 𝕏𝕏𝜓𝜓𝑛𝑛+1 ≠ ∅ → Ψ   (45) 
 
Debido a que 𝕏𝕏𝜓𝜓𝑛𝑛+1 ≠ ∅ se debe elegir un elemento: 

𝜓𝜓𝑘𝑘𝑛𝑛+1 ∈ 𝕏𝕏𝜓𝜓𝑛𝑛+1 . Sea: 
   

𝑓𝑓𝑛𝑛+1(𝜓𝜓𝑗𝑗) = �
𝑓𝑓𝑛𝑛�𝜓𝜓𝑗𝑗� → 𝑗𝑗 = 1, … ,𝑛𝑛,
𝜓𝜓𝑘𝑘𝑛𝑛+1 → 𝑗𝑗 = 𝑛𝑛 + 1.            (45) 

 
∴ ∀𝕊𝕊 ⊆ (𝕏𝕏𝜓𝜓)𝜓𝜓∈𝕊𝕊 → ∃𝑓𝑓𝑛𝑛(𝜓𝜓𝑗𝑗)          (46) 
 
𝑓𝑓𝑛𝑛+1es una función de elección similar a 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 (42) para la 

subfamilia tamaño 𝑛𝑛 + 1. 
Mediante el AC Zermelo-Fraenkel [5] [11] se deduce la 

existencia de una función global. 
 

∃𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺 ∈ ∏ 𝕏𝕏𝜓𝜓 𝜓𝜓∈𝕊𝕊      (47) 
 
∴ 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺:𝕊𝕊 → 𝛹𝛹 ∣  𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜓𝜓) ∈ 𝕏𝕏𝜓𝜓    (48) 
 
Que es la función de colapso formal GRW en una familia 

CFIDQS mediante el axioma de elección ∎. 
 
Demostración 2 
(42) es una función. 
Debido a que la función de elección (2) basada en Fraenkel 

[5] fue modernizada como un producto cartesiano en (4) y la 
proposición 1  demostró que (4) 𝑓𝑓 ∈ ∏ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼    es una  función 
de elección y cumple las características de función moderna al 
contar con: dominio 𝐼𝐼, codominio ⋃ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼 , imagen 𝑓𝑓[𝐼𝐼] ⊆
⋃ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼  y la regla de correspondencia no ambigua 𝑖𝑖 ↦ 𝑓𝑓(𝑖𝑖) ∣
𝑓𝑓(𝑖𝑖)  ∈ 𝐴𝐴𝑖𝑖; así como las condiciones de unicidad funcional: 
(𝑖𝑖, 𝑥𝑥) ∈ 𝑓𝑓 ∧ (𝑖𝑖, 𝑦𝑦) ∈ 𝑓𝑓 → 𝑥𝑥 = 𝑦𝑦; en donde 𝑓𝑓(𝑖𝑖) es el único 
elemento de 𝐴𝐴𝑖𝑖 emparejado con 𝑖𝑖; así mismo en la 
demostración 2 de la proposición 1 se cumple que (4) no es una 
relación y el teorema 8 demostrado por (33) describe una 
función sustituida por 𝑆𝑆 que depende de la elección aleatoria 
bajo un índice 𝑘𝑘 (31) 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺:→ 𝑆𝑆 → 𝛹𝛹 ∣ 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺(𝜓𝜓) = 𝜓𝜓𝑘𝑘 ∣ 𝑛𝑛 ∈
ℕ,𝛹𝛹:ℕ → ℋ, 𝑘𝑘 ~ℙ𝐺𝐺𝐺𝐺𝐺𝐺 , 𝑘𝑘 ∈ ℕ.   

Al contar (42) con las mismas características y haber sido 
obtenida mediante inducción de la proposición 1 y el teorema 
8 los cuales fueron demostrados bajo la regla de existencia para 
una función; entonces la función de elección (42) que 

demuestra el colapso GRW [29] es una función y no una 
relación ∎  

VI. SIMULACIÓN ESTOCÁSTICA DEL MODELO DEL COLAPSO 
FORMAL SLE-GRW COMO UNA FUNCIÓN MEDIANTE EL 

AXIOMA DE ELECCIÓN PARA CIFDQS EN QISKIT 
QISKIT [40] es un framework Open-source desarrollado 

por IBM para cómputo cuántico que permite la simulación de 
sistemas cuánticos mediante el lenguaje Python mediante el 
IDE Spyder desde computadoras personales hasta cuánticas. 

La librería QuantumCircuit permite para crear y manipular 
circuitos cuánticos, los cuales son los algoritmos que utilizan 
operaciones aritméticas y lógicas cuánticas sobre qubits (bits 
cuánticos)[41] el cual es “…la unidad básica de información 
utilizada para codificar datos en computación cuántica y 
puede entenderse mejor como el equivalente cuántico del bit 
tradicional utilizado por las computadoras clásicas para 
codificar información en binario” [42].  

La librería AerSimulator permite emular una computadora 
cuántica de alto rendimiento dentro de Qiskit mediante 
circuitos cuánticos, sus estados como vectores o matrices de 
densidad; así como simular condiciones como el ruido cuántico 
para comprobar modelos en distintos estados. 

La librería Statevector representa y analiza el estado 
cuántico completo de un sistema en un momento  mediante la 
creación de instancias y vectores de estado de un circuito 
cuántico el cual es “…una secuencia de puertas cuánticas 
(transformaciones unitarias) aplicadas a qubits, donde todo el 
cálculo se representa como un grafo acíclico dirigido cuyos 
nodos son puertas y cuyos cables siguen la evolución de los 
estados cuánticos” [43] que devuelve una descripción 
matemática de las superposiciones de estados cuánticos de 
todas las posibles configuraciones permitiendo simular 
sistemas teóricos para obtener resultados medibles. A 
continuación se describe el pseudocódigo del método choose 

 
Método choose(k): 
#Dada una familia indexada de estados discretos 
#Ψ = { Ψ[k]: k ∈ I} ⊆ H,el Axioma de Elección 
#garantiza la existencia de una función:        
#f_AC : I → H; f_AC(k) = Ψ[k]donde cada Ψ[k]es 
#un representante elegido del conjunto Ψ. 
 
 Entrada: 
  k : índice entero (k ∈ I) 
  self.family: familia Ψ = (ψ_0, ψ_1, …) 
 
 Procedimiento: 
  1. k pertenece al dominio f_AC(k)=ψ_k? 
  En caso contrario: error 
  2. Recuperar el estado:ψ ← self.family[k] 
  3. Devolver ψ como la elección de f_AC. 

 
Fig. 1. Diagrama de flujo del método choose(k). 
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El pseudocódigo de la clase función de elección del colapso 
formal GRW mediante el axioma de elección para CIFDQS se 
muestra a continuación: 
 
#Clase Función de elección AC sobre una CIFDQS: 
Clase ChoiceFunctionAC: 

 
#Sea Ψ = { Ψ[k]: k ∈ I} una familia indexada de 
#estados discretos en un espacio de Hilbert H, 
#donde I ⊆ ℕ (familia contable). 
 k : índice entero 
 Ψ : familia CIFDQS = (ψ_k)_{k∈I} 
 
#Definición función de elección: 

 
  f_AC : I → H 
  f_AC(k) = ψ_k 
 
 Entrada: 
   family = (ψ_0, ψ_1, ψ_2, …) 
   #Familia CIFDQS contable, Ψ[k]∈ H 
 
  Método inicializar(family): 

self.family ← family 
 

  Método choose(k): 
  #k ∈ I y existe Ψ[k]definido en family 

 
Paso 1: ψ ← self.family[k] 
si k no está en el dominio de Ψ: error  
retornar Ψ[k] 
 
Paso 2: devolver ψ 
 

 Salida: 
Ψ[k]seleccionado 

 
Fig. 2. Clase ChoiceFunctionAC. 

 
Una vez definida la clase AC y el método choose, se 

presenta el pseudocódigo del modelo matemático para la 
simulación del colapso formal GRW mediante la función y 
axioma de elección para CIFDQS descrito en la sección 
anterior. 

 
Simulación del Colapso formal GRW mediante la 
función y axioma de elección para CIFDQ 
 
 Entrada: 
  N_TRAJ = número de trayectorias (∼1000) 
  T = número de pasos de evolución-cuando (∼6) 
  
Inicializar: 
  Definir familia CIFDQS = {ψ0, ψ1, ψ+, ψ−} 
  Definir función de elección AC(family) 

  Definir estado inicial ψ = c0|0⟩ + c1|1⟩ 
 Procedimiento principal: 
  Para cada trayectoria i en [1 … N_TRAJ]: 

ψ ← estado inicial 
genealogía ← lista vacía 
registro_probabilidades ← lista vacía   

   
  Para cada tiempo t en [1 … T]: 
  (1) Dinámica unitaria  θ_t ← (t+1)·π/6 
  ψ ← U(θ_t) ψ; U(θ_t) = RY(θ_t); U(θ_s) 
  (2)Probabilidades:distribución_Born p(k|ψ)=      
  |⟨ψ_k , ψ⟩|² para cada estado ψ_k CIFDQS.  
  Normalizar p(k|ψ) 
  (3)Elegir k según p(k|ψ)(evento GRW)(SLE) 
  Elegir k según distribución p(k|ψ) 
  (4)Función de elección AC ψ ← AC.choose(k) 
  (5)Registrar (ψ, p, amplitudes) 
 
 Registrar: 
  genealogía.append(k) 
# índice del estado colapso ψ_k 
  registro_probabilidades.append( p(k|ψ) ) 
# probabilidad Born asociada al colapso 
  Guardar genealogía y registro_probabilidades 
  Grafo_A: nodos secuenciales de 1 trayectoria. 
  Grafo B: muestreo de 200 nodos → árbol GRW. 
  Grafo C: matriz de transición → cadena de 
Markov. 
 
 Salida: 
  Genealogías GRW por trayectoria 
# secuencias {k1, k2, …, kT} 
  Distribuciones Born registradas en cada SLE      
# p(k | ψ) en todos los pasos 
  Figuras(Born, árbol GRW, heatmap, histograma) 
 

El programa Una vez definida la clase AC y el método 
choose, se presenta Clase AC como regla de elección 

Para lo cual hace uso de las librerías científicas de numpy, 
de graficado matplotlib, la creadora de grafos networkx, y los 
ya descritos qiskit con sus módulos QuantumCircuit, 
AerSimulator y Statevector. 

La clase ChoiceFunctionAC genera una familia CIFDQS: 
{𝜓𝜓0,𝜓𝜓1, . . . }  mediante la función de elección choose(self, k)  
𝑓𝑓𝑓𝑓𝑓𝑓(𝑘𝑘)  =  𝜓𝜓_𝑘𝑘; si el índice está fuera del dominio del AC 
regresa self.family[k]. 

El sistema utiliza dos funciones: una para convertir 
amplitudes y otra para vectores a forma polar  mediante  los 
módulos de numpy np.abs(z) y np.angle(z). 

Para las familias CIFDQS se genera la función 
generate_CIFDQS() que devuelve una matriz de valores  
complejos [psi0, psi1]. 

El sistema genera una distribución de Born [33] mediante 
born_distribution(state, family) devolviendo una matriz de 
probabilidad probs = []. 

La función de colapso GRW GRW_collapse(state, family, 
ac_choice) agrupa los datos anteriores retornando los datos      
collapsed, k, probs. 

Se genera una dinámica unitaria Qiskit gracias a la librería  
de simulación de circuitos AerSimulator mediante el método  
"statevector" devolviendo una matriz. 
 Para la simulación GRW de 1000 trayectorias y 6 SLE se  
generó la función simulate_GRW(num_traj=1000, steps=6) en 
donde se crean las familias CIFDQS() y se usa la función de 
elección ac = ChoiceFunctionAC(family) con sus respectivas 
matrices para trayectorias y grafos mediante 𝑈𝑈(𝜃𝜃) y las 
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amplitudes en forma polar para obtener los estados de colapso, 
trayectorias, familia y datos. 

La trayectoria individual de cada grafo se obtiene mediante 
la función def graph_single_trajectory(graph_data, 
traj_index=0) en un análisis para ir agregando nodos con sus 
distintas ramificaciones estocásticas  y muestreos como la 
función graph_branching(graph_data, sample_size=200).  

La función para obtener la cadena de transición de Markov 
[38] está dada por graph_markov(graph_data) gracias a la 
librería networkx mediante G = nx.DiGraph() agregando los 
nodos 𝜓𝜓0 y 𝜓𝜓1 . 

El sistema produce finalmente los datos, grafos y gráficos 
de las figuras 4 a la 9.  

El diagrama de flujo que explica lo anterior se describe en 
la figura 3. 

 
Fig. 3. Diagrama de flujo del sistema basado en el modelo matemático de 

colapso formal GRW como una función de elección mediante el axioma de 
elección para CIFDQS en QISKIT. 

 
Para el desarrollo de los siguientes grafos genealógicos 

[43] se utilizará la simbología que se ha venido trabajando en 
el modelo 𝜓𝜓𝑘𝑘, su probabilidad y amplitud complejas del estado 
y un módulo y fase de la forma 𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖 [44]. 

La simulación utiliza 1000 trayectorias y 6 colapsos 
SLE GRW ; lo anterior genera una profundidad en el árbol 
Qiskit. A continuación se muestran los resultados de la 
simulación . 

Las siguientes estructuras producto de la simulación 
reflejan la genealogía [43] de estados dentro de la familia 
CIFDQS y el modelo GRW en donde cada colapso es 
seleccionado mediante la función de elección fAC de acuerdo 
al axioma de elección Zermelo-Fraenkel. 

La Figura 4 muestra el árbol genealógico [43] de colapsos 
GRW de la simulación estocástica de 10 trayectorias 
independientes para una correcta visualización con 6 eventos 
SLE. El tiempo t discreto del proceso de colapso va de 0 a 5; 
cabe resaltar que cada incremento de 𝑡𝑡 corresponde a una 
aplicación de la dinámica unitaria [18] seguida de un evento 
GRW por lo que no representa una magnitud real; por otro lado 
las ordenadas representan el índice de la trayectoria [18] en 
donde se observan las 10 realizaciones simultáneas [46] del 
proceso. Cada nodo 𝜓𝜓𝑘𝑘  simboliza un colapso y las aristas 
muestran la evolución causal [6] dentro de cada trayectoria 
[18]. La estructura resultante de la simulación demuestra la no 
unitariedad [6] [30] del modelo matemático, su estocasticidad 

del colapso [30], su divergencia entre distintas trayectorias 
producto de las fluctuaciones cuánticas [46]  y la forma típica 
de ramificación estocástica de un salto cuántico [47]. 

  

 
Fig. 4. Grafo A. Una sola realización estocástica con 6 colapsos 𝜓𝜓𝑡𝑡 .  
 
La Figura 5 muestra un gráfico de calor (heatmap) de 

transiciones GRW  producto de la simulación en donde se 
obtiene una matriz de probabilidad de SLE donde el eje de las 
abscisas indica el tiempo discreto 𝑡𝑡 = [0 − 5] y en las 
ordenadas el estado de colapso 𝑘𝑘 ∈ {0,1, … } ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. La 
matriz heatmap indica un color de similar a la ecuación (31) 
de modo:  𝑝𝑝𝑡𝑡(𝑘𝑘) = 𝑝𝑝( 𝑘𝑘 ∣∣ 𝜓𝜓(𝑡𝑡) ). 

 
Fig. 5. Heatmap 𝑝𝑝𝑡𝑡(𝑘𝑘) = 𝑝𝑝(𝑘𝑘 ∣∣ 𝜓𝜓(𝑡𝑡) ). 

 
La Figura 6 muestra la simulación respecto al espectro 

Born [32] previo al colapso GRW mediante las probabilidades 
de sus estados discretos 𝜓𝜓𝑘𝑘 ∈ Ψ ⊆ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 de acuerdo a (31) 
y (43) será  𝑝𝑝(𝑘𝑘 ∣∣ 𝜓𝜓 ) = |𝜓𝜓𝑘𝑘 ,𝜓𝜓𝑘𝑘|2 . Las abscisas describen las 
probabilidades Born [33] para dos estados: {𝜓𝜓0,𝜓𝜓1}=[0-~0.4] 
previo al colapso y las ordenadas marcan los dos estados 
discretos [18] mediante líneas que representan muestras 
estadísticas de ellos; lo que permite observar en la simulación 
la asimetría probabilística [21] inducida de la dinámica del 
sistema simulado, su tendencia de cada estado a colapsar 
hacia un valor dominante [18], la correspondencia con la 
medida cuántica estándar (reglas de Born) [32] y que Ψ es una 
familia discreta y normalizada. 

 
Fig. 6. Espectro Born previo al colapso. 
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La Figura 7 describe el histograma final de la simulación 
de 1000 trayectorias en donde se puede apreciar en las abscisas 
el estado de colapso 𝑘𝑘 ∈ {0,1} y en las ordenadas una 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑘𝑘) = |{⟹𝜓𝜓𝑘𝑘}| de [0 − ~25]   La Figura C presenta el 
histograma de estados finales para 1000 trayectorias GRW, 
cada una con 6 eventos de colapso SLE para cada trayectoria 
que termina en 𝜓𝜓𝑘𝑘. 

Lo anterior junto a la simulación permiten describir 
nuevamente su tendencia de cada estado a colapsar hacia un 
valor dominante [18] y la consistencia con la medida cuántica 
estándar (regla de Born) [32] para cada estado mediante la 
función fAC , la propagación de forma estocástica del SLE, una 
nueva normalización por el colapso SLE GRW distribución no 
trivial en el estado final y una emergencia macroscópica [18] 
de datos producidos por un proceso cuántico no unitario [18]. 

 
Fig. 7. Histograma final después del colapso. 

 
El grafo de genealogía [43] A de la figura 8 describe una 

sola realización estocástica 𝜓𝜓𝑡𝑡+1 del proceso de elección 
mediante la función 𝑓𝑓𝐴𝐴𝐴𝐴  GRW similar a la función (45) en 
donde se aprecian 6 colapsos SLE-GRW apreciados como 
saltos cuánticos: 

 
(𝜓𝜓𝑡𝑡+1) = 𝑓𝑓𝐴𝐴𝐴𝐴(𝑘𝑘𝑡𝑡) ∣ 𝑘𝑘𝑡𝑡~𝑝𝑝(𝑘𝑘|𝜓𝜓𝑡𝑡)    (49) 

 

 
Fig. 8. Grafo A. Una sola realización estocástica con 6 colapsos 𝜓𝜓𝑡𝑡 .  

 
El grafo B de la figura 9 describe una submuestra del 

conjunto de 1000 trayectorias de 200 nodos muestreados en el 
grafo de genealogía [43] que forma el árbol GRW se describe 
como: 

 
       𝒯𝒯200 ⊆ 𝒯𝒯 = 

    {𝜓𝜓𝑡𝑡
(𝑗𝑗), 𝑘𝑘𝑡𝑡

(𝑗𝑗), 𝑝𝑝𝑡𝑡(𝑗𝑗)} ∣ 𝑗𝑗 = [1. .1000], 𝑡𝑡 = [1 … 6]         (50) 
 

La ecuación (50) y la simulación describen un proceso de 
ramificación estocástico que demuestra el impacto de Born, la 
no-unitariedad del sistema y el uso de la función 𝑓𝑓𝑓𝑓𝑓𝑓 como 
mecanismo determinista interno mediante el axioma de 
elección de Zermelo-Fraenkel: 

 
    

 
Fig. 9. Grafo B. Submuestra del conjunto de 1000 trayectorias de 200 

nodos muestreados en el grafo de genealogía que forma el árbol GRW. 
 

Por último el grafo C de la figura 10 describe como el 
colapso GRW mediante una simulación de dos estados 𝜓𝜓𝑡𝑡 de 
SLE produce una cadena de transición Markoviana [38] [41] 
con sus respectivos pesos de transición producidos por los 
colapsos reales mediante una probabilidad de acuerdo a la 
definición 28 y la ecuación (31): 

 
 ℙ𝑖𝑖𝑖𝑖 = ℙ�𝜓𝜓𝑡𝑡+1 = 𝜓𝜓𝑗𝑗� ∣ 𝜓𝜓𝑡𝑡 = 𝜓𝜓𝑖𝑖     (51) 

  
 

 
Fig. 10. Grafo C. Cadena de transición Markoviana y pesos producida 

por dos estados en la simulación SLE GRW. 
 

 El circuito cuántico del modelo que transita se describe 
en la figura 11 donde un solo qubit inicializa en  𝜓𝜓(0)⟩ ∣ 𝜓𝜓(0)⟩ 
con una rotación 𝑅𝑅𝑅𝑅(𝜃𝜃)  (dinámica unitaria) y una medición 
en la base computacional salida clásica 𝑘𝑘 que alimenta la 
función de elección 𝐴𝐴𝐴𝐴. 

 
1.-Estado inicial 
 
∣ 𝜓𝜓(0)⟩ = 𝑐𝑐0 ∣ 0⟩ + 𝑐𝑐1 ∣ 1⟩                     (52) 
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2. Evolución Unitaria 

               ∣ 𝜓𝜓(𝑡𝑡)⟩ = 𝑅𝑅𝑦𝑦(𝜃𝜃)   ∣ 𝜓𝜓(0)⟩          (53) 
3. Medición (M) 

 
𝑝𝑝( 0 ∣∣ 𝜓𝜓 ) =∣ 𝑐𝑐0 ∣2, 𝑝𝑝(1 ∣ 𝜓𝜓) =∣ 𝑐𝑐1 ∣2 5T25T      (54) 

 
 

4. Función de Elección AC 
 

𝑓𝑓𝐴𝐴𝐴𝐴(𝑘𝑘) = 𝜓𝜓𝑘𝑘    (55) 
 
 
 

 
Fig. 11. Circuito cuántico. 

 

CONCLUSIONES 

Al realizar el modelo matemático del colapso formal SLE-
GRW [29] como una función mediante el axioma de elección 
para familias infinitas contables de estados cuánticos discretos 
se lograron los siguientes puntos relevantes: 

La teoría de colapso formal planteado por Ghirardi-
Rimini-Weber de los eventos de localización espontánea (SLE) 
[29] carece de un modelo que justifique axiomáticamente el 
salto elegido; por lo que la propuesta de usar el axioma de 
elección de de Zermelo-Fraenkel [3][4][5][11] mediante la 
función de elección 𝑓𝑓𝑐𝑐 formaliza la teoría desde un aspecto 
matemático en la definición 6 y la proposición 1 con sus dos 
respectivas demostraciones. 

Se desarrolló el concepto de familias infinitas contables de 
estados cuánticos discretos (CIFDQS) mediante la definición 
22 y su ecuación (24) para poder utilizar el axioma de elección 
Zermelo-Fraenkel [5][11]; lo cual contribuye a la teoría de 
colapso formal  GRW-SLE [29] al estructurar como una 
familia al conjunto de estados cuánticos mediante los 
principios matemáticos de la teoría de conjuntos [3][4][5][11]. 

Se comentaron y modernizaron los trabajos de Fraenkel[5] 
y Zermelo[3][4] [11] para poder utilizarse con la teoría GRW-
SLE [29] en el artículo tanto en las definiciones como en los 
primero 7 teoremas;  para poder utilizar los conceptos de 
urelementos, celdas, sistema generado y simetrías mediante la 
función de elección 𝑓𝑓𝑐𝑐 para familias numerables. 

Se logró que el concepto de AC en el contexto GRE-SLE 
fuera independiente del resto de axiomas de Zermelo [11] por 
el concepto de propiedad definida□.      

Se realizó un programa en Python que permite la 
simulación del modelo matemático del colapso formal SLE-
GRW como una función mediante el axioma de elección para 
CIFDQS  en QISKIT mediante la creación del método choose 
y la función ChoiceFunctionAC A. 

La simulación permitió generar una realización estocástica 
con 6 colapsos 𝜓𝜓𝑡𝑡 . 

La simulación generó un matriz heatmap permitió obtener 
un color de similar a la ecuación (31) de modo:  𝑝𝑝𝑝𝑝𝑝𝑝=𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡). 

Se generó un espectro Born previo al colapso y su 
histograma obtenido después del colapso. 

Se generó un grafo con una sola realización estocástica 
mediante 6 colapsos 𝜓𝜓𝑡𝑡  y posteriormente una submuestra del 
conjunto de 1000 trayectorias de 200 nodos muestreados en el 
grafo de genealogía  del árbol. 

Se generó en QISKIT una cadena de transición Markoviana 
con sus respectivos pesos producida por dos estados en la 
simulación. 

Así mismo QISKIT permitió simular un circuito cuántico. 
Al existir un modelo matemático del colapso formal SLE-

GRW [29] como mediante la función de elección 𝑓𝑓𝑐𝑐  con el 
axioma de elección AC y  una estructura de familias CIFDQS; 
esto establece el principio para la creación de trabajos que 
desarrollen axiomas similares a la teoría de conjuntos de 
Zermelo-Fraenkel [3][4][5][11] para la teoría GRW-SLE [29].   
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Resumen Los tres modelos matemáticos que se plantean 
generan desde lo teórico, una abstracción de la inteligencia 
artificial donde el modelado de árbol y bosque con una 
probabilidad, siendo utilizado en siete nuevas inversiones que 
mejoran doce variables económicas. El problema de la 
generación de empleo, es abordado junto a el crecimiento del 
delito con una ecuación de probabilidades que es deducible de las 
causas y consecuencias derivadas. El tercer modelo es un fractal 
cuántico que desde lo teórico se demuestra con la autosimilitud y 
dimensión fractal y en lo cuántico con varias probabilidades para 
un mismo método de búsqueda. Usado en situación de conflicto 
armado, búsqueda de personas y física.  

Palabras Clave- cuántico, inteligencia artificial, fractal, 
probabilidad. 

Abstract- The three proposed mathematical models generate, 
from a theoretical perspective, an abstraction of artificial 
intelligence where tree and forest modeling with a probability is 
used in seven new investments that improve twelve economic 
variables. The problem of job creation is addressed alongside the 
growth of crime with a probability equation that can be deduced 
from the resulting causes and consequences. The third model is a 
quantum fractal that, theoretically, demonstrates self-similarity 
and fractal dimension, and in quantum terms, it demonstrates 
multiple probabilities for the same search method. It is used in 
situations of armed conflict, search and rescue, and physics. 

Keywords- quantum, artificial intelligence, fractal, 
probability. 

Mathematical Subject Classification: 81P15, 68T01, 28A80, 
60-XX. 

I. INTRODUCCIÓN 
La búsqueda de soluciones desde las ciencias duras para las 

ciencias sociales y humanas, se potencia con la elaboración de 
modelos matemáticos, en los nuevos paradigmas modernos 
como lo son la inteligencia artificial, los fractales y la física 
cuántica; que, junto a las probabilidades, generan un marco 
conceptual y metodológico de amplias aplicaciones. Los 
modelos teóricos son demostrados en búsqueda de personas, 
simulación de conflictos bélicos, física cuántica, siete nuevos 
modelos de inversión, generación de empleo y aumento de la 
inseguridad o delito. 

II. DESARROLLO. 
 Axioma 1 
Axiomas de Kolmogorov 

1- 𝑁𝑁𝑁𝑁 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  
𝑃𝑃𝑟𝑟 (𝑥𝑥)  ≥  0 

2- 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ó𝑛𝑛 

�𝑃𝑃𝑟𝑟 (𝑥𝑥)  =  1 (𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  1 𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 

3- 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
𝑆𝑆𝑆𝑆 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  

a) 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
b) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ó𝑛𝑛  
c) 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ó𝑛𝑛 𝑓𝑓í𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔é𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Estructura o dominio fractal – cuántica 
 𝑋𝑋 ∈  [0,2𝜋𝜋] (periodicidad – estructura fractal ondulatoria) 
 a > 1 (evita divergencias) 
c ∈ reales. 
 
Axioma fundamental  

La probabilidad de ocurrencia de un evento x en un sistema 
cuántico – fractal está determinada por un peso exponencial 
inverso de su fase ondulatoria 

Axioma de normalización  
Axioma de conservación probabilística 
Existe una constante Z tal que 
 

𝑍𝑍  =  � 𝑎𝑎−(𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥+𝑐𝑐)
2𝜋𝜋

0
 𝑑𝑑𝑑𝑑 

𝑃𝑃(𝑥𝑥)  =  
𝑎𝑎−(𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥+𝑐𝑐)

𝑍𝑍
 

 
Garantiza que  

 

� 𝑃𝑃(𝑥𝑥)
2𝜋𝜋

0
 𝑑𝑑𝑑𝑑 =  1 

 
Axioma de autosimilitud fractal 
La distribución de probabilidad es invariante bajo 

transformaciones de escala angular 
Axioma de interpretación cuántica  

La función P(x) no representa una probabilidad clásica 
directa, sino la medida estadística emergente de 
interferencias cuánticas distribuidas fractal  

 
𝑃𝑃(𝑥𝑥)  ≥  0 

�𝑃𝑃(𝑥𝑥)  𝑑𝑑𝑑𝑑 =  1 

mailto:ferim74@yahoo.com.ar
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Teorema 1: Fractal cuántico.   
Si tenemos un fractal lineal con demostración en su 

autosimilitud y dimensión con un modelo de probabilidad de 
estadística circular, entonces podemos inferir que es un fractal 
cuántico ya que sus valores están distribuidos con distintas 
probabilidades y su modelo de probabilidad es:           Pr = 
𝑎𝑎−(cos𝑥𝑥+𝑐𝑐) 

Demostración  
Si tenemos el siguiente modelo de probabilidad en estadística 
circular 
 

𝑃𝑃𝑟𝑟 =   𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥   
 

Tomamos en consideración un incremento de sin x 
 

𝑃𝑃𝑟𝑟 =   𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 .  ∆𝑥𝑥   
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ñ𝑜𝑜𝑜𝑜  

∆𝑥𝑥 →  𝑑𝑑𝑑𝑑 
𝑃𝑃𝑟𝑟 =   𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 .  𝑑𝑑𝑑𝑑   

𝐿𝐿𝐿𝐿 𝑃𝑃𝑟𝑟 =  𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 𝑑𝑑𝑑𝑑 . 𝐿𝐿𝐿𝐿 𝑎𝑎 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

𝐿𝐿𝐿𝐿 𝑃𝑃𝑟𝑟 =  (− 𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 +  𝑐𝑐) . 𝐿𝐿𝐿𝐿 𝑎𝑎 

𝑃𝑃𝑟𝑟 =  
1

𝑒𝑒(𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥+𝑐𝑐) .  𝐿𝐿𝐿𝐿 𝑎𝑎    

𝑃𝑃𝑟𝑟 =  (𝑒𝑒  𝐿𝐿𝐿𝐿 𝑎𝑎  )(− 𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥+𝑐𝑐)  
(𝑒𝑒  𝐿𝐿𝐿𝐿 𝑎𝑎  )  =  𝑎𝑎 

𝑃𝑃𝑟𝑟 =  𝑎𝑎−(𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥+𝑐𝑐) 
 
Con lo que queda demostrado∎ 

 
Escolio 

0 ≤  𝑃𝑃𝑟𝑟 ≤  1 
1 ≤  𝑎𝑎 <  ∞ 
0 ≤  𝑐𝑐 <   ∞ 
0 ≤  𝑥𝑥 ≤  

𝜋𝜋
2

 
Extremos relativos 
 

𝑋𝑋 =  0 

𝑃𝑃𝑟𝑟 =  
1

𝑒𝑒(𝑐𝑐𝑐𝑐𝑐𝑐 0+𝑐𝑐) .  𝐿𝐿𝐿𝐿 𝑎𝑎  

𝑃𝑃𝑟𝑟 =  
1

𝑒𝑒( 1+  𝑐𝑐)  .  𝐿𝐿𝐿𝐿 𝑎𝑎    
 

Cuando x toma su mínimo valor la Pr depende de las 
variables 𝐶𝐶,𝐴𝐴 

𝑋𝑋 =  
𝜋𝜋
2

   

𝑃𝑃𝑟𝑟 =  
1

𝑒𝑒�𝑐𝑐𝑐𝑐𝑐𝑐 𝜋𝜋2 +𝑐𝑐� .  𝐿𝐿𝐿𝐿 𝑎𝑎 
 

𝑃𝑃𝑟𝑟 =  
1

𝑒𝑒�𝑐𝑐𝑐𝑐𝑐𝑐 𝜋𝜋2 +𝑐𝑐� .  𝐿𝐿𝐿𝐿 𝑎𝑎 
 

𝑃𝑃𝑟𝑟 =  
1

𝑒𝑒  𝑐𝑐  .  𝐿𝐿𝐿𝐿 𝑎𝑎  
 
También podemos determinar que la probabilidad para 

valores de 𝑥𝑥 =  𝜋𝜋
2
 o su máximo valor que dependen de las 

variables c, a 
𝐴𝐴 =  1 

𝑃𝑃𝑟𝑟 =  
1

𝑒𝑒�𝑐𝑐𝑐𝑐𝑐𝑐 𝜋𝜋2 +𝑐𝑐� .  𝐿𝐿𝐿𝐿 1 
 

𝑃𝑃𝑟𝑟 =  1 
 

Consideramos que el valor mínimo de a nos lleva a la 
mayor probabilidad 

 
𝐴𝐴 →  ∞ 

 
Para valores grandes de a tenemos  

 

𝑃𝑃𝑟𝑟 =  
1
𝑒𝑒∞

 
𝑃𝑃𝑟𝑟 =  0 

 
La probabilidad es menor debido a altos valores de a 
 

𝐶𝐶 =  0 

𝑃𝑃𝑟𝑟 =  
1

𝑒𝑒(𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 +0) .  𝐿𝐿𝐿𝐿 𝑎𝑎  

𝑃𝑃𝑟𝑟 =  
1

𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 .  𝐿𝐿𝐿𝐿 𝑎𝑎  
 
Debido a su naturaleza cuántica los distintos valores de c 

nos llevan a distintas probabilidades  
 

𝐶𝐶 →  ∞ 

 𝑃𝑃𝑟𝑟 =  
1

𝑒𝑒(𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥+ ∞) .  𝐿𝐿𝐿𝐿 𝑎𝑎  

𝑃𝑃𝑟𝑟 =  
1
𝑒𝑒∞

 
𝑃𝑃𝑟𝑟 =  0 

 
Con altos valores de la constante de integración c 

esperamos valores pequeños de probabilidad 
 

 
Fig. 1. Fractal cuántico.  
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Fig. 2. Modelo de probabilidad  

 
 

Fractal en forma de círculos 
Dimensión: partimos de la cantidad de cortes y 

cantidad de repeticiones 
Cortes: 4 
Repeticiones: 5 
 

𝐷𝐷 =  
𝑙𝑙𝑙𝑙 5
𝑙𝑙𝑙𝑙 4

=  1,16096 

 
Esa es su dimensión fractal, visto en [1] 
 

Fractal en forma de círculos 
Auto similitud 
Partamos de la ecuación del circulo 

 
𝑥𝑥^2 +  𝑦𝑦2  =  ℝ2 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷 

𝐷𝐷𝐷𝐷 . 𝑥𝑥2 + Dx .𝑦𝑦2  =  𝐷𝐷𝐷𝐷 .𝑅𝑅2 
 

𝑥𝑥3

3
+ 𝑥𝑥 .  𝑦𝑦2  =  𝑥𝑥 .𝑅𝑅2 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝 𝐷𝐷𝐷𝐷 

𝑥𝑥3

3
.  𝐷𝐷𝐷𝐷 +  𝑥𝑥 .  𝑦𝑦2 .𝐷𝐷𝐷𝐷 =  𝑥𝑥 .𝐷𝐷𝐷𝐷 .𝑅𝑅2   

 
𝑥𝑥3

3
.𝑌𝑌 +  

𝑦𝑦3

3
.𝑋𝑋 =  𝑥𝑥. 𝑦𝑦.𝑅𝑅2 

 
𝑥𝑥3

3
.𝑌𝑌 +  

𝑦𝑦3

3
.𝑋𝑋 =  𝑥𝑥. 𝑦𝑦.𝑅𝑅2 

 
𝑥𝑥2

3
 + 

𝑦𝑦2

3
 =   𝑅𝑅2 

𝑥𝑥2  +  𝑦𝑦2  =  3 .𝑅𝑅2  

 
Si volvemos hacer los mismos pasos R se incrementa en 

productos por 3 
 𝑥𝑥2  +  𝑦𝑦2  =  3𝑛𝑛 .𝑅𝑅2 

 
Por lo tanto, se demuestra la auto similitud de círculos en 

otros círculos con un radio distinto, visto en [2]  
 

Corolario 
Sea la densidad de probabilidad fractal – cuántica  
P(x) = 𝑎𝑎−(cos𝑥𝑥+𝑐𝑐)

 ∫ 𝑎𝑎−(cos𝑥𝑥+𝑐𝑐)2π
0  𝑑𝑑𝑑𝑑

     a>1 

 
Entonces  
La probabilidad se concentra preferentemente en las regiones 
donde la fase oscilatoria es mínima 
Demostración 

1- La función exponencial inversa cumple: 𝑎𝑎−𝑦𝑦 es 
estrictamente decreciente en y 

2- Como cos x ∈ [-1,1] el exponente (cos x + c) es 
mínimo cuando cos x = -1 entonces x = 𝑎𝑎−(−1+𝑐𝑐) + 2 
πk 

3- En estos puntos  
P(x) α 𝑎𝑎−(−1+𝑐𝑐) = 𝑎𝑎(1−𝑐𝑐) 

4- Los mínimos probabilísticos ocurren cuando 
5- Cos x = 1 entonces x = 2 πk 

La figura 1 nos muestra las propiedades de los fractales en 
su autosimilitud al desprenderse estadísticamente de la figura 
principal otras figuras parecidas. Esta autosimilitud estadística 
nos infiere también en la dimensión fractal que debe pertenecer 
a los reales y no entera. La figura al dividirse en cuatro figuras 
nuevas representa el número de cortes.  

La figura 2 considera el modelo de probabilidades 
propuesto, tiene como eje 𝑍𝑍 a la probabilidad 𝑃𝑃𝑟𝑟 , los otros 
ejes representan a las variables: 𝑎𝑎, 𝑐𝑐. 

Su representatividad es esencial a la interpretación matemática 
del modelo cuántico – fractal. 
 
Teorema 2: Inteligencia artificial bosque 
Si tenemos un modelo de probabilidades y = 𝑎𝑎(cos𝑥𝑥) ,entonces 
cada árbol de un bosque puede definirse como 𝑃𝑃𝑃𝑃𝑃𝑃 =
  𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥+𝑐𝑐) y el promedio de los árboles como una ecuación de 
bosque de la forma: 𝑃𝑃𝑟𝑟𝑟𝑟 =  (𝑎𝑎1

(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥1+𝑐𝑐1)  + 𝑎𝑎2
(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥2+𝑐𝑐2)  +

 … +  𝑎𝑎𝑛𝑛
(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑛𝑛+𝑐𝑐𝑛𝑛))/𝑛𝑛 

 
Demostración   
Si tenemos el siguiente modelo de probabilidad en estadística 
circular 

𝑃𝑃𝑟𝑟 =   𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥   
Tomamos en consideración un incremento de sin x 

𝑃𝑃𝑟𝑟 =   𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 .  ∆𝑥𝑥   
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ñ𝑜𝑜𝑜𝑜  

∆𝑥𝑥 →  𝑑𝑑𝑑𝑑 
𝑃𝑃𝑟𝑟 =   𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 .  𝑑𝑑𝑑𝑑   

𝐿𝐿𝐿𝐿 𝑃𝑃𝑟𝑟 =  𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 𝑑𝑑𝑑𝑑 . 𝐿𝐿𝐿𝐿 𝑎𝑎 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

𝐿𝐿𝐿𝐿 𝑃𝑃𝑟𝑟 =  (𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 +  𝑐𝑐) . 𝐿𝐿𝐿𝐿 𝑎𝑎 

𝑃𝑃𝑟𝑟 =  
1

𝑒𝑒(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 + 𝑐𝑐) .  𝐿𝐿𝐿𝐿 𝑎𝑎    
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𝑃𝑃𝑟𝑟 =  (𝑒𝑒  𝐿𝐿𝐿𝐿 𝑎𝑎  )(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥+𝑐𝑐)  
(𝑒𝑒  𝐿𝐿𝐿𝐿 𝑎𝑎  )  =  𝑎𝑎 
𝑃𝑃𝑟𝑟 =  𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥+𝑐𝑐) 

𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝑙𝑙 𝑞𝑞𝑞𝑞𝑞𝑞 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
0 ≤  𝑃𝑃𝑟𝑟 ≤  1 
0 ≤  𝑎𝑎 ≤  1 
0 ≤  𝑐𝑐 <   ∞ 
0 ≤  𝑥𝑥 ≤  

𝜋𝜋
2

 
 
Extremos relativos, visto en [3] 
 

𝑋𝑋 =  0 
𝑃𝑃𝑟𝑟 =  𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠 0+𝑐𝑐) 
𝑃𝑃𝑟𝑟 =  𝑎𝑎(𝑐𝑐) 

 
Cuando x toma su mínimo valor la Pr depende de las 

variables 𝐶𝐶,𝐴𝐴  
 

𝑋𝑋 =  
𝜋𝜋
2

   

𝑃𝑃𝑟𝑟 =  𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋 2+𝑐𝑐) 
𝑃𝑃𝑟𝑟 =  𝑎𝑎(1+ 𝑐𝑐) 

 
También podemos determinar que la probabilidad para 

valores de x = 𝜋𝜋
2
 o su máximo valor que dependen de las 

variables 𝑐𝑐, 𝑎𝑎 
 

𝐴𝐴 =  0 
𝑃𝑃𝑟𝑟 =  0(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 +𝑐𝑐) 

𝑃𝑃𝑟𝑟 =  0 
 

Consideramos que el valor mínimo de a nos lleva a la 
menor probabilidad 
 

𝐴𝐴 =  1 
 

Para valores grandes de a tenemos  
 

𝑃𝑃𝑟𝑟 =  1(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 +𝑐𝑐) 
𝑃𝑃𝑟𝑟 =  1 

 
La probabilidad es mayor debido a altos valores de a 

 
𝐶𝐶 =  0 

𝑃𝑃𝑟𝑟 =  𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 +0) 
𝑃𝑃𝑟𝑟 =  𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 ) 

 
Debido a su naturaleza cuántica los distintos valores de c 

nos llevan a distintas probabilidades  
C → ∞ 

 𝑃𝑃𝑟𝑟 =  𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 +∞) 
 

𝑃𝑃𝑟𝑟 =  0   debido a que un valor de a entre 0 y 1 potencia 
infinito se va haciendo cada vez más pequeño hasta llegar a 0 
Bosque. 
 
𝑃𝑃𝑟𝑟𝑟𝑟 =  (𝑎𝑎1

(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥1+𝑐𝑐1)  + 𝑎𝑎2
(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥2+𝑐𝑐2)  +  … +  𝑎𝑎𝑛𝑛

(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑛𝑛+𝑐𝑐𝑛𝑛))/𝑛𝑛  
 

Esta relación matemática promedia los árboles en un 
bosque de probabilidades, visto en [4] 

 
Figura 3. Modelo de árbol 

 
Los parámetros de la figura 3 son eje Z es la probabilidad 

de árbol y los otros dos ejes son las variables: a, c. Se observa 
valores entre 0 y 1 en el eje Z de la probabilidad 
 

Teorema 3: Si tenemos causas y consecuencias en un 
modelo, entonces su forma final será: 𝑃𝑃𝑟𝑟 = (1/
2)  . ( (((𝐶𝐶1^2 . (𝐶𝐶𝐶𝐶11^2 + … +  𝐶𝐶𝐶𝐶1𝑘𝑘^20))/𝑘𝑘1) ^(1/
𝑡𝑡1)  +  ((𝐶𝐶2^2 . (𝐶𝐶𝐶𝐶21^2 +  … +  𝐶𝐶𝐶𝐶2𝑘𝑘))/𝑘𝑘2) ^(1/𝑇𝑇2)  +
 … +  ((𝐶𝐶𝑛𝑛𝑛𝑛 . (𝐶𝐶𝐶𝐶𝑛𝑛1^2 +  … +  𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛))/𝑘𝑘𝑛𝑛) ^(1/𝑇𝑇𝑛𝑛)) /𝑛𝑛 

𝐶𝐶𝐶𝐶: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

 
Demostración  
Extremos relativos 

1) 
𝐶𝐶𝑖𝑖 =  0 
𝑃𝑃𝑟𝑟 =  0 

 
2)  

𝐶𝐶𝑖𝑖 =  1 
𝑃𝑃𝑟𝑟 = (1/2)  . ( ((𝐶𝐶𝐶𝐶11^2 + … +  𝐶𝐶𝐶𝐶1𝑘𝑘^20)/𝑘𝑘1) ^(1/𝑡𝑡1)  

+ (( (𝐶𝐶𝐶𝐶21^2 + … 
+  𝐶𝐶𝐶𝐶2𝑘𝑘))/𝑘𝑘2) ^(1/𝑇𝑇2)  + … 
+ (( (𝐶𝐶𝐶𝐶𝑛𝑛1^2 +  … 
+  𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛))/𝑘𝑘𝑛𝑛) ^(1/𝑇𝑇𝑛𝑛)) /𝑛𝑛  

 
Cuando no encontramos causas la probabilidad depende 
enteramente de 𝐶𝐶𝑖𝑖𝑖𝑖 𝑦𝑦 𝑇𝑇𝑖𝑖, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑒𝑒𝑒𝑒 [5] 
 

3) 𝐶𝐶𝑜𝑜𝑜𝑜 =  0 
𝑃𝑃𝑟𝑟 =  0 

4) 𝐶𝐶𝑜𝑜𝑜𝑜 =  1  
𝑃𝑃𝑐𝑐𝑐𝑐 =  (1/2 . ((𝑘𝑘1/𝑘𝑘1)^(1/𝑡𝑡1)  +  (1/2 . (𝑘𝑘2/𝑘𝑘2)^(1/𝑇𝑇2)  

+  … +  ((𝑘𝑘𝑛𝑛/ 𝑘𝑘𝑛𝑛) ^(1/ 𝑡𝑡𝑛𝑛)) /𝑛𝑛 
𝑃𝑃𝑐𝑐𝑐𝑐 =  ½. (1 +  1 + … +  1) /𝑛𝑛 

𝑃𝑃𝑐𝑐𝑐𝑐 =  ½ 
5) 𝑇𝑇𝑖𝑖 =  0 
𝑃𝑃𝑟𝑟 =  0 

Al hacer potencias de infinito los números Ci y Coi van 
disminuyendo su valor hasta no tener ninguno, visto en [6] 

6) 𝑇𝑇𝑖𝑖 →  ∞ 
𝑃𝑃𝑟𝑟 =  ½ 
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III. TEOREMAS Y AXIOMAS. 
Teorema 1 
1)  𝑃𝑃𝑟𝑟 ≥ 0 

𝑆𝑆𝑆𝑆 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠 𝑎𝑎 > 0 𝑦𝑦 𝑎𝑎 ≠ 1 
𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

2) Cota superior  
0 ≤  𝑃𝑃𝑟𝑟 ≤  1 

𝐸𝐸𝐸𝐸 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣í𝑎𝑎 𝑒𝑒𝑒𝑒  
−(𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 +  𝑐𝑐)  ∈  ( −(1 +  𝑐𝑐),−(−1 +  𝑐𝑐)) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  
𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑎𝑎−(−1+𝑐𝑐) =  𝑎𝑎(1− 𝑐𝑐) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃𝑟𝑟 ≤  1 
 𝑎𝑎(1− 𝑐𝑐)  ≤  1 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

𝑆𝑆𝑆𝑆 𝑎𝑎 > 1 →  𝑐𝑐 ≥ 1 
𝑆𝑆𝑆𝑆 0 < 𝑎𝑎 < 1 →  𝑐𝑐 ≤ 1 

Teorema 2 
1) 𝑁𝑁𝑁𝑁 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

𝑃𝑃𝑟𝑟 ≥  0  
𝑆𝑆𝑆𝑆 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎á𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎 > 0 

2) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥 ∈  [−1,1] 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 +  𝑐𝑐 ∈  [𝑐𝑐 − 1, 𝑐𝑐 + 1] 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑎𝑎𝑐𝑐−1 ,𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑎𝑎𝑐𝑐+1 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑞𝑞𝑞𝑞𝑞𝑞 𝑃𝑃𝑟𝑟 ≤  1 

A) 𝑆𝑆𝑆𝑆 𝑎𝑎 >  1: 𝑐𝑐 +  1 ≤  0 →  𝑐𝑐 ≤  −1 
B) 𝑆𝑆𝑆𝑆 0 <  𝑎𝑎 <  1 

𝐶𝐶 +  1 ≥  0 →  𝐶𝐶 ≥  −1 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑟𝑟 ≥  0 𝑦𝑦𝑦𝑦 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎 >  0. 

IV. ESCOLIO. 
En situación de un conflicto bélico dos aspectos son 

estudiados: 
Lugares de refugio y búsqueda de alimentos 
Se simulan para cada uno de los cuatro círculos inscritos en el 
circulo mayor del fractal, con números pseudo aleatorios y la 
variable normal 

A) Lugares con muchos muertos y heridos (Referencia 
estadística promedio) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  30% (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ó𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷í𝑜𝑜 = 5 % (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ó𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

𝐶𝐶1 =  0,28057 
𝐶𝐶2 =  0,36770 
𝐶𝐶3 =  0,28360 
𝐶𝐶4 =  0,36767 

B) Lugares con muchos refugiados (Referencia 
estadística promedio) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  70% (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ó𝑛𝑛) 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷í𝑜𝑜 =  10% (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ó𝑛𝑛) 

𝑋𝑋1 =  0,62291 =  56,6919° 
𝑋𝑋2 =  0,63251 =  56,9259° 
𝑋𝑋3 =  0,75693 =  68,1237° 
𝑋𝑋4 =  0,74187 =  66,7683° 

 
C) Zonas más críticas por ser estratégicas al enemigo 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  55% (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ó𝑛𝑛) 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷í𝑜𝑜 =  0,05% (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ó𝑛𝑛) 

𝐴𝐴1 =  0,50266 =  7,18085 
𝐴𝐴2 =  0,55695 =  7,95642 
𝐴𝐴3 =  0,53410  =  7,63 

𝐴𝐴4 =  0,58993 =  8,42757 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐á𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

𝑃𝑃𝑟𝑟1: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑞𝑞𝑞𝑞𝑞𝑞 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 𝐴𝐴1 ,𝑋𝑋1 ,𝐶𝐶1  
𝑃𝑃𝑟𝑟2: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑞𝑞𝑞𝑞𝑞𝑞 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 𝐴𝐴2 ,𝑋𝑋2 ,𝐶𝐶2 
𝑃𝑃𝑟𝑟3: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑞𝑞𝑞𝑞𝑞𝑞 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 𝐴𝐴3 ,𝑋𝑋3 ,𝐶𝐶3 

𝑃𝑃𝑟𝑟4: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑞𝑞𝑞𝑞𝑞𝑞 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 𝐴𝐴4 ,𝑋𝑋4 ,𝐶𝐶4 
 

𝑃𝑃𝑟𝑟1 =  7,18085−(𝑐𝑐𝑐𝑐𝑐𝑐 56,6919°+0,28057) 
𝑃𝑃𝑟𝑟1 =  0,19481 

𝑃𝑃𝑟𝑟2 =  7,95642−(𝑐𝑐𝑐𝑐𝑐𝑐 56,9259°+0,36770) 
𝑃𝑃𝑟𝑟2 =  0,15040  

𝑃𝑃𝑟𝑟3 = 7,63−(𝑐𝑐𝑐𝑐𝑐𝑐 56,6919°+0,28360) 
𝑃𝑃𝑟𝑟3 =  0,18411 

𝑃𝑃𝑟𝑟4 =  8,42757−(𝑐𝑐𝑐𝑐𝑐𝑐 66,7683°+0,36767)  
𝑃𝑃𝑟𝑟4 =  0,19701 

 
Entonces se deduce que las cuatro probabilidades 

corresponden a cuatro círculos del fractal y su naturaleza 
cuántica corresponde a que pueden estar en los cuatro círculos 
con distintas probabilidades. También, se considera como las 
mayores probabilidades son:  𝑃𝑃𝑃𝑃4 =  0,19701 𝑦𝑦 𝑃𝑃𝑃𝑃1 =
 0,19481. 

La naturaleza cuántica es la que explica que a mayores 
valores de las variables: a, c, x los valores de probabilidades 
pueden ser menores o los más grandes. Una deducción del caso 
para los menores valores de las variables que generan altas 
probabilidades es que los apartados A, B, C son determinantes 
en la supervivencia en zonas de conflictos; entonces 
encontraremos refugios en lugares con pocas bajas humanas, 
poca concentración de refugiados y alejados de zonas 
estratégicas para el enemigo.  

Búsquedas de personas y trata de personas 
Simulamos distancias variables (variable c), con otros datos 
constantes como ser zonas de peligro y cantidad de casos en 
las zonas estudiadas 
Media = 0,45 (distancia máxima con la última vez que se vio a 
la víctima), referencia estadística promedio 
 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷í𝑜𝑜 =  0,05 
𝐶𝐶1 =  0,51847 
𝐶𝐶2 =  0,45569 
𝐶𝐶3 =  0,42479 

Zonas de peligro constantes (referencia estadística 
promedio) 
A = 6 (Kilómetros desde la zona que se observó por última vez 
a la víctima) 
Cantidad de casos en zonas estudiadas  
 

𝑋𝑋 =  70° 
𝑃𝑃𝑟𝑟1 =  6−(𝑐𝑐𝑐𝑐𝑐𝑐 70°+0,51847) 

𝑃𝑃𝑟𝑟1 =  0,21399 
𝑃𝑃𝑟𝑟2 =  6−(𝑐𝑐𝑐𝑐𝑐𝑐 70°+0,45569) 

𝑃𝑃𝑟𝑟2 =  0,23947 
𝑃𝑃𝑟𝑟3 =  6−(𝑐𝑐𝑐𝑐𝑐𝑐 70°+0,42479) 

𝑃𝑃𝑟𝑟3 =  0,25310 
 

La conclusión que se saca es que a menores distancias de 
la última vez que se vio a la víctima es más probable 
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encontrarla, entonces hay que buscar las primeras 12h en 
lugares cercanos. 
Veamos ahora la simulación para áreas de búsqueda 
 

𝐶𝐶 =  0,25 
𝐴𝐴 =  7 

 
𝑃𝑃𝑟𝑟 =  0,8 (la alta probabilidad sugerida aumenta el éxito en la 
búsqueda) 

𝑃𝑃𝑟𝑟 =  𝑎𝑎−(𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥+𝑐𝑐) 
𝐿𝐿𝐿𝐿 0,8 =  𝐿𝐿𝐿𝐿 7 . (−(𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 +  0,25)) 

𝐿𝐿𝐿𝐿 0,8
𝐿𝐿𝐿𝐿 7 

 −  0,25 =  −𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 
𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥 =  0,36467 
𝑋𝑋 =  68,61272° 

 
Con una alta probabilidad de encontrar a la víctima, 

podemos inferir un área de 𝑥𝑥 =  68,61272° que ocupa más de 
los dos tercios del área total del círculo. 

Física y área más probable de encontrar a los electrones 
Fijemos la cantidad de electrones en el litio cuyo número 
atómico es 3 lo que significa 3 electrones en un átomo neutro 

𝐴𝐴 =  3 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 
𝐶𝐶 =  0,23  

(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ó𝑛𝑛 𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐á𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 
𝑃𝑃𝑟𝑟 =  0,5 

 𝑃𝑃𝑟𝑟 =  𝑎𝑎−(𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥+𝑐𝑐) 
𝐿𝐿𝐿𝐿 0,5 =  𝐿𝐿𝐿𝐿 3 . (−(𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 +  0,23)) 

𝐿𝐿𝐿𝐿 0,5
𝐿𝐿𝐿𝐿 3 

 −  0,23 =  −𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 
𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥 =  0,86092 
𝑋𝑋 =  30,57996° 

 
El área queda en un tercio del total del círculo, lo que deja 

como corolario que la variable cuántica c, es de vital 
importancia. 
 
Teorema 2  

𝑃𝑃𝑟𝑟 =   𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥+𝑐𝑐) 
Siete modelos de inversión  

Caso 1: Se invierte desde una aplicación, bajando los costos 
operativos, para nuevas y actuales empresas pymes; y se cobra 
tanto el capital como los intereses desde cada compra o 
consumo de productos de fabricación nacional descontando de 
los impuestos que el consumidor o inversor genera en la 
compra. Los beneficiarios del préstamo lo pagan en cuotas al 
estado, que es el que financia los impuestos y garante final. 

Caso 2: Idéntico formato que el primero, pero para invertir 
en empresas de producción primaria o agricultura y ganadería  

Caso 3: Idéntico al primero, con inversiones en empresas 
tecnológicas. 

Caso 4: Idéntico al primero, con inversiones en empresas 
industriales que explotan y le dan valor agregado a la 
producción primaria de agricultura y ganadería. 

Caso 5: Idéntico al primero, con inversiones en empresas 
industriales en general.  

Caso 6: Idéntico al primero, con inversiones en la obra 
pública, aquí el que paga es el estado. 

Caso 7: Idéntico al primero, con inversiones en la 
construcción de vivienda para ciudadanos que son los que 
pagan el préstamo.    
 

Beneficios, visto en [7] 
1– Las inversiones generan riquezas en el aumento del PBI 
2– Baja de los impuestos para los inversores 
3– Aumento de mano de obra y del consumo 
4– Mayor recaudación impositiva del estado 
5– Menor evasión  
6– Viviendas para ciudadanos  
7– Obra pública que mejora las ciudades y pueblos 
8– Al aumentar la mano de obra se mejora la recaudación para 
beneficios de los jubilados 
9– Mayor ingreso de nuevos emprendedores en los siete 
modelos de inversión, lo que genera ingresos de divisas al país. 
10 – Baja del riesgo país  
11- Baja de la inflación al mejorar la oferta y bajar impuestos 
12 – Se podría bajar los impuestos de los emprendedores y 
demás ciudadanos al aumentar la recaudación final del país  
Simulamos las variables para los siete modelos de inversión  
Media = 0,35 (corresponde a un aumento porcentual del 
crédito) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷í𝑜𝑜 =  0,05 
𝐴𝐴1 =  0,34951 
𝐴𝐴2 =  0,37418 
𝐴𝐴3 =  0,37981 
𝐴𝐴4 =  0,40647 
𝐴𝐴5 =  0,41082 
𝐴𝐴6 =  0,31429 
𝐴𝐴7 =  0,30356 

 
Tomemos como referencia un valor constante para la variable 
x que es el porcentaje de sociedad beneficiada  
X = 70° (más de los dos tercios de la población beneficiada) 
Pr = 0,85 (alta probabilidad sugiere un crecimiento del PBI) 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1 
𝐿𝐿𝐿𝐿 0,85 =  (𝑠𝑠𝑠𝑠𝑠𝑠 70° +  𝑐𝑐) . 𝐿𝐿𝐿𝐿 0,34951 

𝐶𝐶 =  −0,78509 
 

La constante C en el cálculo de un valor negativo, pero a los 
fines matemáticos y no superficialmente se toma como valor 
positivo. Entonces queda 
C = 0,78509 
Traduciéndose que casi el 1% del PBI crecerá con este crédito 
a las pymes 
Caso 2  
 𝐿𝐿𝐿𝐿 0,85 =  (𝑠𝑠𝑠𝑠𝑠𝑠 70° +  𝑐𝑐) . 𝐿𝐿𝐿𝐿 0,37418 

𝐶𝐶 =  −0,77436 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝐶𝐶 =  0,77436 
𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝑙𝑙 𝑞𝑞𝑞𝑞𝑞𝑞 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑 1% 𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 3  
𝐿𝐿𝐿𝐿 0,85 =  (𝑠𝑠𝑠𝑠𝑠𝑠 70° +  𝑐𝑐) . 𝐿𝐿𝐿𝐿 0,37981 

𝐶𝐶 =  −0,77181 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝐶𝐶 =  0,77181 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑 1% 𝑑𝑑𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 4 
𝐿𝐿𝐿𝐿 0,85 =  (𝑠𝑠𝑠𝑠𝑠𝑠 70° +  𝑐𝑐) . 𝐿𝐿𝐿𝐿 0,40647 

𝐶𝐶 =  −0,75916 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝐶𝐶 =  0,75916 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎 1% 𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑 𝑃𝑃𝑃𝑃𝐼𝐼 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 5  
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𝐿𝐿𝐿𝐿 0,85 =  (𝑠𝑠𝑠𝑠𝑠𝑠 70° +  𝑐𝑐) . 𝐿𝐿𝐿𝐿 0,41082 
𝐶𝐶 =  −0,75700 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
𝐶𝐶 =  0,75700 

𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1% 𝑑𝑑𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 6 

𝐿𝐿𝐿𝐿 0,85 =  (𝑠𝑠𝑠𝑠𝑠𝑠 70° +  𝑐𝑐) . 𝐿𝐿𝐿𝐿 0,31429 
𝐶𝐶 =  −0,79928 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
𝐶𝐶 =  0,79928 

𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1% 𝑑𝑑𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃 
Caso 7  

𝐿𝐿𝐿𝐿 0,85 =  (𝑠𝑠𝑠𝑠𝑠𝑠 70° +  𝑐𝑐) . 𝐿𝐿𝐿𝐿 0,30356 
 

𝐶𝐶 =  −0,80337 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑜𝑜 𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝐶𝐶 =  0,80337 
𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1% 𝑑𝑑𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃 

Veamos cómo sigue la inteligencia artificial expuesta en un 
bosque 

 
𝑃𝑃𝑟𝑟 =  (0,78509 +  0,77436 +  0,77181 +  0,75916 

+  0,75700 +  0,79928 +  0,80337) / 7 
𝑃𝑃𝑟𝑟 =  0,77858 

 
Entonces la conclusión final es que un aumento del 35% en los 
créditos, un 0,85 de probabilidad y más de dos tercios de los 
habitantes beneficiados tiene como objetivo cumplido un 
aumento del 0.77858% del PBI. 
 
Partamos del análisis de causas y consecuencias 
Caso 1 
Causas: inversión privada y pública 
Consecuencias: Generación de empleo  
Co1: Público, tasa de público = 0,3 
Co2: Privado, tasa de lo privado = 0,4 
 
Demostración 
 

𝑃𝑃𝑟𝑟1 =  0,75 
𝐶𝐶𝑎𝑎1 =  0,85  

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑 𝑢𝑢𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ó𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 
𝑇𝑇1 =  6 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
𝐶𝐶𝑎𝑎2 =  0,55 

 (𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ó𝑛𝑛) 
𝑃𝑃𝑟𝑟2 =  0,45  
𝑇𝑇2 =  8 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

0,75 ≥  ½ . (0,85 .  �0,3 .𝐶𝐶𝑜𝑜12 +  0,4 .𝐶𝐶𝑜𝑜22 �)1/6 

0,45 ≥  ½ . (0,55 . �0,3 .𝐶𝐶𝑜𝑜12 +  0,4 .𝐶𝐶𝑜𝑜22 �)1/8 
Este sistema de ecuaciones con dos incógnitas lo resolvemos 
analíticamente  
 
𝐿𝐿𝐿𝐿 (0,75 . 2)  ≥  1/6 . 𝐿𝐿𝐿𝐿 (0,85 . �0,3 .𝐶𝐶𝑜𝑜12 +  0,4 .𝐶𝐶𝑜𝑜22 �) 

2,43279 ≥  𝐿𝐿𝐿𝐿  (0,85 . �0,3 .𝐶𝐶𝑜𝑜12 +  0,4 .𝐶𝐶𝑜𝑜22 �) 

�0,3 .𝐶𝐶𝑜𝑜12 +  0,4 .𝐶𝐶𝑜𝑜22 �  ≤  13,40072 
 
La segunda inecuación tiene el siguiente análisis  
𝐿𝐿𝐿𝐿 (0,45 . 2)  ≥  1/8 . 𝐿𝐿𝐿𝐿 (0,55 . (0,3 .𝐶𝐶𝐶𝐶12 +  0,4 .𝐶𝐶𝐶𝐶22)) 

−0,84288 ≥  𝐿𝐿𝐿𝐿  (0,55 . (0,3 .𝐶𝐶𝐶𝐶12 +  0,4 .𝐶𝐶𝐶𝐶22)) 

�0,3 .𝐶𝐶𝑜𝑜12 +  0,4 .𝐶𝐶𝑜𝑜22 � ≤  0,78267 
 

Quedando un sistema de dos ecuaciones cuadráticas que 
pueden ser resueltas con programación no lineal. Se usó 
software matemático LINGO 

�𝐶𝐶𝑜𝑜12 +  𝐶𝐶𝑜𝑜22 �  →  𝑀𝑀𝑀𝑀𝑀𝑀 

�0,3 .𝐶𝐶𝑜𝑜12 +  0,4 .𝐶𝐶𝑜𝑜22 �  ≤  13,40072 

�0,3 .𝐶𝐶𝑜𝑜12 +  0,4 .𝐶𝐶𝑜𝑜22 � ≤  0,78267 
Los resultados en el software libre LINGO arrojan para Co1, 
Co2 

𝐶𝐶𝑜𝑜1 =  1,615209             
𝐶𝐶𝑜𝑜2 =  0 

Entonces la primera consecuencia es la solución y podemos 
esperar que se generará mayor cantidad de empleos públicos, 
que es Co1 = 1,615209. Interpretamos este valor como un 
incremento de 1.615209% del PBI en empleos públicos.                         
 
Segundo ejemplo 
Caso 2 
Empleos mal pagados generan la necesidad de ganar más 
dinero con la delincuencia, visto en [8] 
Pr = 0,75 
Ca = 0,85 (un 85% de los casos de empleos mal pagados) 
T = 9 (en meses es el tiempo de ruptura entre lo legal e ilegal) 
Co: Entrar en la delincuencia como opción de obtener mayores 
ganancias 
Pr = (Ca . Co)1/𝑡𝑡 
0,75 = (0,85 . Co)1/9 
Ln 0,75 = 1/9 . Ln (0,85 . Co) 
-2,58913 = Ln (0,85 . Co) 
0,85 . Co =  e−2,58913 
Co = 0,08833 
La conclusión extraída de los análisis matemáticos es que 
alrededor del 8,833% de la población que cobra magros 
sueldos en el lapso de 9 meses podría dedicarse a la 
delincuencia. 

V. CONCLUSIONES. 
El planteo de diferentes temáticas sensibles y de urgente 
resolución es abstraída con tres modelos matemáticos 
originales; generando un enfoque sistémico y conceptual de 
difícil abordaje. Siendo notorio el vacío institucional de los 
temas analizados, se plantean estos modelos matemáticos 
originales para replantear y llenar ese vacío, muchas veces 
argumental y enfocado a las interacciones entre las ciencias 
duras y ciencias sociales. Este objetivo es cumplido y la 
sistematización de procesos complejos ayuda a las 
instituciones y demás actores privados a valerse de ellos para 
jerarquizar y resolver tales problemas. 
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