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CARTA DEL EDITOR

Para esta ocasion, los editores resefiamos brevemente tres obras publicadas en afios
cuya secuencia calendarica coincide con este 2025.

En 1930, la editorial Verlag S. Hirzel de la ciudad de Leipzig publica la obra titulada “Die
physikalischen Prinzipien der Quantentheorie” o “Los Principios Fisicos de la teoria cuantica”,
cuyo autor fue Werner Heisenberg, obra basada en una serie de conferencias dictadas por él un
afo antes. Su teoria de matrices es una de las bases de la mecanica cuantica moderna, ademas
que su Principio de Incertidumbre cambid toda la perspectiva de la ciencia. En esta obra,
Heisenberg propone un acercamiento completo fisico de la teoria cudntica, incluyendo en ella
los resultados de sus investigaciones ademas de analizar los resultados de Niels Bohr, Paul Dirac,
Jegadish Bose, Luis de Broglie, Enrico Fermi, Albert Einstein, Wolfgang Pauli, Erwin Schrédinger,
Wilhelm Sommerfeld, Emil Rupp, Charles Thomson, Rees Wilson. EI conocimiento de la
matematica moderna para esa época era una condicidn necesaria. El texto esta dividido en cinco
partes y un apéndice. 1) Parte introductoria. 2) Critica a los conceptos fisicos de la teoria
corpuscular. 3) Critica a los conceptos fisicos de la teoria ondulatoria. 4) Interpretacion
estadistica de la teoria cuantica. 5) Discusidn sobre los experimentos importantes. Apéndice: El
aparato matematico de la teoria cuantica: 1) El concepto corpuscular de la materia. 2) La teoria
de la transformacion. 3) La ecuacion de Schrodinger. 4) El método de la perturbacion.5) La
resonancia entre dos atomos: la interpretacion fisica de la transformacion de matrices. 6) El
concepto corpuscular de la radiacién. 7) Estadistica Cuantica. 8) El concepto ondulatorio parala
materia y la radiacién. 9) Teoria cuantica de campos ondulatorios. 10) Aplicacién de carga
negativa al movimiento ondulatorio. 11) Prueba de la equivalencia matematica entre la teoria
cuantica de particulas y la teoria ondulatoria. 12) Aplicacion a la teoria de la radiacion. De este
apéndice, la parte (11) el autor analiza que el propdsito de la teoria cuantica se enfoca en el
hecho de que la representacién mental de las particulas y del movimiento ondulatorio son, en
si, dos aspectos diferentes, pero en una misma realidad fisica, y aunque es un problema de
origen puramente fisico, es relevante identificar una contraparte a esta dualidad en el contexto
matematico de la teoria. Esta analogia dentro del contexto de la realidad fisica se refiere a que
un mismo conjunto de ecuaciones matematicas se puede interpretar en términos de cualquiera
de las imagenes que se adecuen al observador; por ello, la prueba de esta afirmacién se puede
efectuar adecuadamente y de manera general, sin considerar la forma particular del
Hamiltoniano involucrado. Asi, la ecuacién de Schrodinger que representa el esquema de la
particula para N particulas equivalentes se escribe:

h o
(BN 0"+ B 07 00 b () = 0 7]

Donde o™ representa al operador que actla solamente sobre el espacio de
coordenadas x,, correspondiente a la enésima particula, y 0™ representa una accidn sobre las
co-ordenadas de ambos en la enésima y la m-ésima situacién. El andlisis que propone
Heisenberg es sumamente interesante y continua al involucrar el sistema de funciones
ortogonales en términos tridimensionales que satisfacen condiciones limites cuando son
expandidas; indica también el uso de matrices que representan los operadores
correspondientes en el sistema de co-ordenadas de las particulas; ademds, nota que los valores
numéricos de los elementos matriciales dependen Unicamente de los indices subsecuentes y no
de las variables n, m. Refiere, ademads, que para el caso de la estadistica Bose-Einstein, se



presenta la simetria en los nimeros cudnticos de las particulas, por ello, también se puede
expresar en términos de funciones relacionadas con el nimero N de particulas en el r-ésimo
estado. Conforme describe matematicamente los objetos cudnticos, va llegando a la conclusion
de la identidad entre dos ecuaciones y por tanto a la existencia de la equivalencia matematica
entre las representaciones de la particula y el movimiento ondulatorio. Ademas, menciona que
una prueba similar se puede aplicar para el caso del Principio de Exclusidon de Pauli y las
relaciones de intercambio. Una conclusién de su trabajo se refiere al hecho de que, las teorias
clasicas de las representaciones corpusculo-ondulatorias son, en si, completamente diferentes,
tanto fisica como matematicamente. Sin embargo, las teorias cudnticas de las dos son idénticas.

En 1969 Bruno Dejon y Peter Henrici editaron con apoyo de la casa editorial Wiley-
Interscience (una division de John Wiley & Sons Ltd), la serie de ponencias llevadas a cabo en el
Simposio titulado “Constructive aspects of the Fundamental Theorem of Algebra” o “Los
aspectos constructivos del teorema fundamental del dlgebra” celebrado del 5 al 7 de junio de
1967 en las instalaciones del Laboratorio de Investigacidn IBM en la ciudad de Riischlikon, Suiza.
El propdsito del simposio fue reunir a investigadores expertos en el campo del analisis
constructivo y numérico y asi abrir espacio de discusidn sobre el significado del concepto de
constructividad dentro del contexto de problemas clasicos bien definidos sobre célculo
numérico, conocido como el problema de la determinacion de los ceros de un polinomio. Los
editores aclaran que, debido a las obvias limitaciones, Unicamente un pequefio grupo de
investigadores se reunié para el intercambio de puntos de vista sobre el tema. Sin embargo,
quienes tuvieron la oportunidad de estar presentes estuvieron de acuerdo en que los debates
fueron informativos y muy estimulantes. Asi, el propdsito central de esta publicacidon es que
contribuya todavia mas a la comprensidn entre los aspectos tedricos y prdacticos del célculo
algebraico. Se presentaron 17 reportes de investigacion (incluidos los editores). 1) Algoritmo de
busqueda de raices, convergente, rapido y a prueba de fallos. 2) Calculando un cero, por medio
de interpolacién lineal sucesiva. 3) Algunas observaciones sobre el articulo de Dekker. 4) ¢Qué
es un resolutor satisfactorio de ecuaciones cuadraticas? 5) Polinomios matematicos y fisicos. 6)
Una forma constructiva sobre la segunda prueba de Gauss del teorema fundamental del dlgebra.
7) Algoritmos uniformemente convergentes para la aproximacion simultanea de todos los ceros
de un polinomio. 8) Sobre la notacién de la constructividad. 9) Los bigradientes, las
determinantes de Henkel y la Tabla Padé. 10) Un algoritmo para un resolutor automatico de
polinomios generales. 11) La determinacidn numérica de raices polindmicas multiples y
estrechamente adyacentes, utilizando un método de Bernoulli mejorado. (En aleman). 12)
Procedimientos de busqueda para resolver ecuaciones polinomiales. 13) Un método para la
solucidn automatica de ecuaciones algebraicas.14) Funciones de iteracion para la solucion de
ecuaciones matriciales polinomiales. 15) Sobre el problema de encontrar los ceros de los
polinomios. (En aleman). 16) Factorizacién de polinomios por medio de procedimientos
generalizados de Newton. 17) El teorema fundamental del dlgebra en el analisis recursivo. 15 de
estos trabajos se presentaron en inglés y dos de ellos en alemdan. Vale la pena mencionar la
descripcién de las ideas de aquella época. En (15), sobre el Teorema fundamental del dlgebra el
autor inicia con la descripcién de conjuntos numéricos. Asi, N representa al conjunto de los
“numeros naturales”. @ , representa al campo de los nimeros racionales complejos, el campo
de nimeros de la forma: a + bi, endonde a, b € Q. Ademas, una secuencia o de los elementos
de @, en términos funcionales se escribe: g,0: N — Q y tiene la propiedad de ser recursiva, siy
solo si, existen funciones recursivas de la forma: f] (G=1,23,4; f] N = N), con la condicién
necesaria de que para todos los n € N, tengan la forma:



_ f1(n) f3(n)
= D Rt D

Asi, tal secuencia o es recursivamente convergente si y sdlo si existe también una
funcién recursiva k(k: N — N), tal que para todos los elementos h, j,n € N posean la siguiente
condicién:

hz k() Aj 2 k() = lo(h) —o()| <——

La consecuencia inmediata es que un nimero complejo c es recursivo si y sélo si existe
una secuencia recursiva a(o: N = Q) que converga recursivamente con la condicién necesaria
siguiente:

¢ = lim a(n).

n—oo

Ahora, si k es una funcidn que satisface la desigualdad escrita anteriormente, para todos
los elementos h,j,n € N, entonces también lo hard para los elementos h,n € N. De esta
manera continua el autor con la descripcién axiomatica que justifica la existencia del teorema
fundamental del dlgebra dentro del analisis recursivo. Finalmente, concluye que la recursividad
en todos sus casos mostrados se puede extender a una generalizacidon en espacios métricos
recursivos que son totalmente limitados. Dicha generalizacion representa la analogia
constructiva del teorema que afirma la continuidad de la funcién inversa de la funcién uno a uno
definida sobre un espacio compacto. Sin embargo, esta prueba es aun (para la época) no
constructiva. Las pruebas constructivas establecen un teorema fundamental sélido del algebra
en andlisis recursivo.

En 1986 la editorial Claredon Press, en Belfast Irlanda del Norte, publica la obra titulada
“Quantum concepts in space and time” o “Los conceptos cudnticos en el espacio y el tiempo”
participando como editores R. Penrose y C. J. Isham. Su antecedente data de una publicacion
denominada “Quantum Gravity” o “La gravedad Cuantica” que incluia las ponencias presentadas
en 1974 en el Laboratorio Rutherford y en 1980 en el Instituto de Matemadticas de Oxford, y
posteriormente en el Colegio Lincoln en 1984. Por ello, el propdsito central de esta obra fue
examinar nuevamente algunos aspectos fundamentales relativos a la gravedad cuantica,
generando reflexién sobre la posibilidad de que algunas reglas de la teoria cuantica pudiesen
modificarse antes de lograr un vinculo con la relatividad general. Es asi como centraron su
esfuerzo de publicacion en abordar temas relacionados con los problemas de la fisica cuantica
inherentes al espacio y al tiempo (de ahi el titulo de la obra). La mayor parte de los articulos
publicados presentan un enfoque ensayistico mas que un informe de investigacién, lo que
coincide con otro propdsito de esta obra, el explorar fundamentos del tema, mas que comunicar
el desarrollo de técnicas especificas. La publicacién también se centré en abordar problemas
cuanticos no locales, de estado de reduccién vectorial y los posibles vinculos con la gravedad.
Sin embargo, los autores tuvieron toda la libertad de abordar otros tépicos relacionados con
estos temas. Si bien no se reportan soluciones a la mayoria de los problemas citados, si se
pueden leer muchisimas aportaciones para el pensamiento cudntico de hace 40 anos. La obra
contiene 27 contribuciones de destacados investigadores de aquella época: 1) Experimentos
Einstein-Podolsky-Rosen y los tipos de correlaciones con pares de fotones visibles. 2) Probando



la superposicién cuantica con neutrones frios. 3) El principio de superposicién en sistemas
macroscépicos. 4) Fendmenos no locales y el efecto Aharonov-Bohm. 5) Efectos gravitacionales
sobre sistemas cuanticamente cargados. 6) Reducciéon de estado continuo. 7) Modelos de
reduccion. 8) Sobre el posible papel de la gravedad en la reduccién de una funcién de onda. 9)
Gravedad y reduccion del estado vectorial. 10) Mecanica estocastica, variables ocultas y
gravedad. 11) Entropia, incertidumbre y no linealidad. 12) Eventos y procesos en el mundo
cuantico. 13) La interpretacion de los multi mundos de la mecanica cuantica en la cosmologia
cuantica. 14) Tres conexiones entre la interpretacion de Everett y el experimento. 15) Las
amplitudes de transicion frente a las probabilidades de transicién y una reduplicacion del
espacio-tiempo. 16) El Tiempo Liebniziano, la dindmica Machiana y la gravedad cuantica. 17) El
espacio-tiempo y la gravedad. 18) Topo-dindmica cuantica en dimensiones superiores. 19)
Construyendo un universo con cuerdas de bits: un reporte de avance. 20) La funcion de onda de
Hawking para el universo. 21) Cuantificacion candnica de los agujeros negros. 22) Las
correlaciones y la causalidad en la teoria de campos cudntica. 23) Auto dualidad y las técnicas
espinoriales como una aproximacion candnica a la gravedad cudntica. 24) Campos cuanticos,
coordenadas curvolineales y el espacio-tiempo curvado. 25) Accion efectiva para los valores de
esperanza. 26) Materia cargada desde la perspectiva de la teoria Kaluza-Klein. 27)
Supergravedad cudntica via cuantificaciéon candnica.

En (18), los autores proponen la posibilidad de describir eficazmente la relacidn de las
entidades cudnticas, llevandolas al limite continuo, al expandir: g = s ; H = ha, conservando

G, H finitas y a, que representa la reticula de expansidn, tendiente a cero. Asi, proponen que
la ecuacion que describe una simple entidad (particulas y/o campos), con puntos extremos
R{,R, es la ecuacion de Schrodinger para la amplitud ¥ (R4, R;) de la entidad con puntos
extremos Ry, R,:

G2y 0%y
——|=—=+=—= |+ HIRy — Ryl = E

Junto con una condicion de frontera:

0

ORI SEES

También proponen la descripcidn para el caso de n entidades.

[*] W. Heisenberg. (1949). The physical principles of the quantum Theory. Dover Edition. New
York.

En el nimero 13 de la revista Journal de Objetos y Objetivos Matematicos se presentan
articulos relacionados con lo anterior mencionado. En la seccién de objetos matematicos se
publica un trabajo basado en el objeto matematico “Teorema Fundamental del Algebra”
agregando dos disquisiciones y 6 notas aclaratorias de Joseph Liouville y una demostracion
mediante Homotopia; asi mismo respecto al abandonado tema del célculo de Lunulas un autor



rescata mediante un algoritmo para el calculo integral de volimenes n-dimensionales en R™ de
hiperldnulas en la interseccidn de hiperesferas y un teorema que generaliza el cdlculo integral
de la medida bidimensional de lunulas R™ mediante barridos geométricos y célculo vectorial
para las regiones sin subdivisién, con subdivisidon en dos partes y con subdivision en tres.

La seccién objetivos esta dedicada a la fisica cudntica, comenzando con un trabajo que
axiomatiza el modelo de colapso formal GRW (Ghirardi-Rimini-Weber) de SLE (spontaneous
localization events) utilizando el trabajo de Zermelo-Fraenkel para establecer familias infinitas
contables de estados cudnticos discretos (CIFDQS) como una funcién de eleccidon con una
simulacién en QISKIT; asi mismo un autor propone tres modelos matematicos con I.A.
probabilistica en economia, de empleo y un fractal cuantico con autosimilitud y dimension
aplicado a conflicto armado, busqueda de personas vy fisica.

El JOOM extiende una cordial invitacidn a enviar trabajos a nuestro congreso amigo 12th
2026 International Conference on Control, Decision and Information Technologies (CoDIT 2026)
de IEEE www.codit2026.com

Los editores.
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Resumen- EI objeto matematico denominado Teorema
Fundamental del Algebra ha cobrado mucha importancia en el
estudio de la matematica basica, debido a que, con él, se asegura
que todo polinomio de grado n, tendra exactamente n soluciones,
garantizando orden y completitud en todos los procesos
algebraicos relativos a encontrar las raices de ecuaciones. La
presente contribucién contiene dos disquisiciones y 6 notas
aclaratorias. En la primera de ellas, abordo el trabajo de Joseph
Liouville y su demostracién a este teorema, con tres notas
aclaratorias. La segunda disquisicion describe una demostracion
basada en el objeto matemético denominado Homotopia,
inherente a la Topologia, con tres notas aclaratorias.

Palabras Clave- - Campo Complejo, Homotopia, Teorema
fundamental del algebra.

Zusammenfassung- Der Fundamentalsatz der Algebra hat in
der Grundlagenmathematik groRBe Bedeutung erlangt, da er
garantiert, dass jedes Polynom n-ten Grades genau n Lésungen
besitzt. Dies gewéhrleistet Ordnung und Vollstandigkeit in allen
algebraischen Verfahren zur Nullstellenbestimmung von
Gleichungen. Dieser Beitrag enthalt zwei Abschnitte und sechs
Erlduterungen. Im ersten Abschnitt behandle ich die Arbeit von
Joseph Liouville und seinen Beweis dieses Satzes, erganzt durch
drei Erlauterungen. Der zweite Abschnitt beschreibt einen
Beweis, der auf dem in der Topologie verankerten
mathematischen Konzept der Homotopie basiert, und enthélt
ebenfalls drei Erlauterungen.

Schlagworter-. Fundamentalsatz der Algebra, Homotopie,
Komplexe Koérper.

Pestome- MartemMaTHueCKHH 00bEKT, M3BECTHBIH Kak
dDyHaaMeHTATbHAs TeopeMa ajredpsbl, npuodpen
SHAYUTECJIBHYI0 Ba)KHOCTbL B M3YyUYCHUH (l)yH}IaMeHTaJII)HOﬁ
MAaTEMAaTUKH, IIOCKOJbKY OH TapaHTHpPYeET, 4YTO Ka)KZILIf/i
MHOI'OYICH CTCIIEHu n 6y£leT HMETb POBHO N pemelmf/i,
obecrnieyuBasi MOPSIAOK M TMOJHOTY BO BCeX ajrefpamyeckux
npoueccax, CBS3aHHBIX C HAXO)KAeHHEeM KOpHell ypaBHeHHI.
JlanHasi cTaThsl COAEP:KMT ABa pasjesa oﬁcy)wlel-mﬂ U 1IeCTh
NOSICHUTEJILHBIX MPUMeYaHuii. B mepBom pa3szesie o0cy kneHus s
paccmatpuBaw  padory  Koszepa JluyBuwiaiisi H ero
J0Ka3aTeJbCTBO ITOM TEOPEMbI, 4 TAKKE TPU NMOSACHUTEC/IbHBIX
npuMe4vYaHusi. Bo BTOpOM pasjaeje oﬁcymnemm OIIUCBHIBAECTCHA
JA0Ka3aTeJIbCTBO, OCHOBAHHOC¢ Ha MaTEeMaTH4YC€CKOM OGBeKTe,
H3BECTHOM KaK IOMOTOIIMsI, NMPUCYLIEM TOIIOJOIHM, TAKKe C
TPeMA NMOACHUTECJIbHBIMA IPUMEYAHUAMM.

KiioueBbie cJioBa- roMOTOIINA, KoMiuiekcHoe
OCHOBHasl TeopeMa anreﬁpbl.

Mathematical Subject Classification: 11A07.

moJie,

I. INTRODUCCION

El Teorema Fundamental del Algebra (TFA) establece que
todo polinomio con coeficientes representados por nimeros
complejos tiene una raiz en este campo C. Esta idea fue
primeramente propuesta por A. Girard en 1629 y por Renato
Descartes en 1637, con una formulacién un tanto diferente a
la utilizada en la actualidad [1]. C. McLaurin y Leonard Euler

realizaron una formulaciébn mas precisa proponiendo una
forma muy parecida a la de nuestros dias. La descripcion de
esta propuesta afirma que todo polinomio con coeficientes
reales se puede descomponer en la forma de un producto de
factores lineales y cuadraticos que contienen coeficientes
reales. Una primera prueba a esta afirmacion fue realizada por
J. D’Alembert en 1746, y lo hicieron también Leonard Euler,
Pierre Laplace, J. L. Lagrange y algunos otros autores durante
la segunda mitad del siglo 18. Sin embargo, todas las pruebas
ofrecidas se basaban en la suposicion de la existencia de raices
ideales del polinomio y a partir de esta idealizacion se
pretendia demostrar que al menos una de ellas, era un nimero
complejo. Carl Gauss fue quien primeramente realizd la
demostracién sin basarse en el supuesto de que las raices
realmente existen. Su método de prueba se basa en esencia, en
escribir detalladamente el campo de descomposicién de un
polinomio. En un contexto actual, todas las pruebas del TFA
incluyen de alguna forma las propiedades topolégicas de los
nimeros Reales y Complejos [2]. El papel de la topologia
consiste en considerar el supuesto de que un polinomio de
grado impar con coeficientes reales tiene una raiz real [3]. Se
sugiere que el lector tenga nociones de algebra superior,
concretamente sobre la férmula integral de Cauchy y su
estimacion, asi como de las nociones bésicas de topologia
inherentes al estudio de la homotopia, ya que las
demostraciones se basan en algunas de estas ideas, que, Si
intento citarlas, la redaccién de la idea principal se perderia en
el discurso, debido a la extensa continuacion y enlace de las
proposiciones necesarias para aclarar la propuesta axiomatica.

I1. DISQUISICIONES.
Disquisicion 1
Nota 1.- EI TFA en el trabajo matematico de Liouville. El
antecedente inmediato es su teorema implicado en el campo
complejo C [6].

Teorema: f(z) tiene componentes enteros, |f(z)| esta
limitado por vz € C, -~ f(z) describe un valor constante. o

Nota 2.
Consecuentemente, si el médulo functional esta delimitado en
toda la extension del campo C, f(z) representa un polinomio
de grado n + 1, cuando menos.

Demostracion. Sea M el maximo valor de |f(z)| en C,.
f(z) posee componentes enteros, y ademas |f(z)| < MV z €

C. En consecuencia, |f'(z)| < % (Por el Estimado de Cauchy
[6]). Ademés, como f(z) es entero, se establecen tres
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consecuencias: i) r — oo, ii) |[f'(2)| = 0, iii) f'(z) = 0. Por
lo tanto f(z) es constante. Entonces: f"(z) < M Vz € C —
|[F ()| < g (Por el axioma 9 de Peano y el Estimado de

Cauchy). Se establecen tres consecuencias: i) r — oo, i)
@ (z) = 0, iii) f™(2) es un valor constante. Por lo tanto,
f(z) describe a un polinomio de grado al menos n + 1 (Por el
Teorema de antidiferenciacion). ]

Nota 3.- El lugar geométrico inherente al Estimado de
Cauchy es un circulo de radio r y centrado en el origen. Es
interesante comentar esta propuesta, conocida como el
Estimado de Cauchy. Ademas, utilizo el trabajo original de
Giuseppe Peano: Artihmetices Principia, Axioma 9.

Teorema: Sea D un dominio simplemente conectado.
Ademas, f(z) representa una funcion analitica en D > C,

(circulo de radio r, y centrado en z, [6]. Entonces,
|f(")(zo)|sm—f,VZE(C0 |
0

T

Demostracion.
|f ™ (2| < |(n!)(2m"1) [, F@)((z = 2™ dz| <

(Mn)@m) " < [fg, [@2)((z — 20)™ )"
propiedades de Integracién). Ademas, al expandir sobre C,, se
tiene : i) = z, + rpe't ;i) dz = irge™.

Reescribo:

(Por las

| I, (@d2)((z - 2)")7 = | [T rymeint dt| = 2mr, .

(Por cambio de representacion rectangular a representacion
polar y por Propiedades de Integracion trigonomeétrica).

Por lo tanto:
If"(20)| =< (Mn)(rg) ™" n

Disquisicién 2

Nota 4.- EI TFA en el contexto topoldgico. La homotopia
como objeto matematico describe las propiedades invariantes
y las propiedades de deformacion dentro de un grupo
fundamental. Sean f, g dos funciones continuas. Si existen
una familia de funciones denotadas por M(x,q), tal que
justifiquen la transformacion gradual de la funcién f en la
funcién g, con la condicidn de que g varie dentro del intervalo
cerrado [0,1], con (M(x,0) = f(x) AM(x,1) = g(x)),
entonces £, g son homotopicas [4].

TFA.- Sea P un polinomio no constante. 0 e VP € C O

Nota 5.- Al expandir la funcién polinomial: f(z) = z" +
Pn-12""1+pz+p, , con las condiciones: i) n > 0; ii)
Pn-1, P, Po €EC ~ 32y €C|f(z)=0. [5]

Demostracion: A f(z,) =0—-> 2z f(z)  generaria
f:€ — C— 0 (Por Prop. Asociativa de la Adicién en C); al
considerar la serie: o = |po| + |p1| + -+ |pp_al +1 Yy
ademas la relacion: z € S, con S como la representacion de
un espacio topologico, y por la Propiedad Asociativa de la
multiplicacién y la Propiedad Asociativa de la Adicién en C,
tenemos: If(6z —a™z"| < |py + olpy| + - +
" Hppoal < 0™ (Dol + 1]+ .. +ppoa) < 0™ =

|e™z™| [5], por contradiccion al Teorema: [§1,81] — Z,
basado en [f] — grad(f) ]

Nota 6.- Las propiedades topolégicas hacen que f(oz) se
localice en interior de un circulo topoldgico de centro ¢™z" y
con radio |¢™z"™| Es de notar que el segmento que une a estos
dos objetos matematicos no contiene al punto origen. La
consecuencia inmediata es la generacién de la Homotopia:
H:8' X 1 — C — 0, con aplicacidn inicial: z - f(oz), que es
nulhomotépica y aplicacion final: z —» ¢™z", también
nulhomotdpica. Entonces, al retraerla topoldgicamente,

tenemos: r: C — 0 —» S, con la condicion: r(z) = Ii De este

z|l”
modo, se obtiene §* — Sy en consecuencia z — z™, lo que
hace contradecir el teorema mencionado y relativo al mapeo

de funciones en superficies topologicas.

I11. CONCLUSIONES.

El TFA ha sido una propuesta muy valorada para el
lenguaje matematico contemporaneo. Las demostraciones a
esta propuesta han enriquecido y ampliado las ideas
matematicas a lo largo del tiempo. Esta breve aportacion la
centré en elaborar dos disquisiciones y 6 notas basadas en el
conocimiento del campo de nimeros complejos cuyo estudio
permite la solucion de ecuaciones en todas sus formas, cuya
ventaja €s su uso en otras ramas del conocimiento, como la
ingenieria y la fisica; y de la topologia cuya ventaja principal
radica en la profunda generalizacion y abstraccion, al trabajar
ideas relacionadas con el concepto de cercania, sin el requisito
del concepto de distancia métrica, abarcando asi, un conjunto
mayor de espacios topolégicos.
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Resumen- En este trabajo se introduce el Teorema de las
hiperlanulas, una formulacién generalizada para el calculo
integral de volimenes n-dimensionales en R™. Las hiperldnulas
se entienden como regiones delimitadas por casquetes generados
en la interseccion de hiperesferas, lo que amplia de manera
natural la nocion clasica de lanula en el plano. ElI método se
construye a partir de la extension de mis resultados previos en
RZ?, donde logré formular un esquema unificado independiente
de restricciones sobre la forma de los arcos. En esta version
general, la propuesta se fundamenta en técnicas de calculo
vectorial, cambios de variable en integrales multiples y el uso
sistematico de coordenadas esféricas e hiperesféricas. El
resultado establece un marco sistematico y consistente para
abordar configuraciones geométricas de cualquier dimension,
consolidando asi una herramienta integral aplicable en contextos
de geometria integral y analisis multivariable.

Palabras Clave- hiperldnula, medidas n-dimensionales,
geometria integral, hiperesferas, teorema.

Abstract- This paper introduces the Theorem of Hyperlunulae,
a generalized formulation for the integral calculation of n-
dimensional volumes in R™. Hyperlunulae are defined as regions
delimited by spherical caps arising from the intersection of
hyperspheres, naturally extending the classical notion of planar
lunes. The method builds upon my previous results in R, where
a unified framework was established independently of arc
restrictions. The general formulation presented here relies on
vector calculus, multivariable change of variables, and the
systematic use of spherical and hyperspherical coordinates. The
result provides a consistent and systematic approach to
geometric configurations in arbitrary dimensions, consolidating
a tool applicable to problems in integral geometry and
multivariable analysis.

Keywords- hyperlunules, n-dimensional measures, integral
geometry, hyperspheres, theorem.

Mathematical Subject Classification: 51M25, 26B15,
53A07.

I. INTRODUCCION

El estudio de las lunulas ha sido, desde la Antigiiedad, un
tema de interés tanto geométrico como analitico. En un trabajo
previo se presenta un teorema general para el calculo de areas
de lGnulas en R?, bajo la restriccion de que el arco exterior
correspondiera a una semicircunferencia [1]. Posteriormente,
se desarrolla una extension mas general —realizada en
paralelo a la presente investigacion— en la que el método no
depende de condiciones particulares sobre el arco, lo que
permite obtener una formulacion unificada para el célculo de
la medida bidimensional de ltnulas.

El presente articulo constituye la continuacién natural de
esa linea de investigacion. El objetivo es trasladar las ideas
previamente desarrolladas hacia espacios de mayor

dimensién, con énfasis en las regiones generadas por
intersecciones de esferas en R™.

Para ello, se introduce y demuestra el Teorema de las
hiperlinulas, el cual establece un procedimiento sistematico
para calcular volimenes n-dimensionales mediante técnicas
de célculo integral, calculo vectorial y transformaciones de
coordenadas sustentadas en el jacobiano correspondiente.

De esta manera, se consolida una progresion conceptual
que parte de las ltnulas clasicas en dos dimensiones y alcanza
su extension a espacios de dimension arbitraria, ofreciendo un
marco tedrico general con aplicaciones potenciales en
geometria integral y analisis multivariable

Il. OBSERVACIONES SOBRE EL MARCO GEOMETRICO DE LA
HIPERLUNULA

El término lGnula aparece histéricamente en la geometria
clasica como una figura plana delimitada por arcos de
circunferencia, estudiada desde la antigliedad en el contexto
euclidiano. No obstante, la evolucion de la geometria a partir
del siglo XIX permitié extender de manera sisteméatica
conceptos geométricos clasicos a espacios de dimension
arbitraria y, mas generalmente, a variedades diferenciables
dotadas de una estructura métrica.

En particular, la geometria riemanniana proporciona un
marco natural para la generalizacién de nociones geométricas
elementales, al permitir definir distancia, longitud de curvas y
volumen mediante una métrica g, incluso en ausencia de una
estructura euclidiana plana. [5]

Dentro de este contexto, construcciones originalmente
bidimensionales pueden reinterpretarse y extenderse a
espacios de mayor dimensién, manteniendo su intuicion
geométrica fundamental.

El prefijo hiper se utiliza aqui precisamente para sefialar

esta extension estructural y dimensional del concepto clésico
de lunula. La hiperlinula no se concibe como una mera figura
plana, sino como una generalizacion geométrica definida en
R™—y, de manera mas general, en variedades riemannianas—
donde la noci6n de arco y region se reemplaza por
intersecciones y subconjuntos determinados por estructuras
métricas de dimension superior.
En este sentido, el uso del término hiperlinula refleja tanto la
raiz histérica del concepto como su formulacién moderna,
situando al objeto dentro del lenguaje contemporaneo de la
geometria sin perder su conexion con la tradicién clasica.
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I1l. DEFINICIONES, PROPIEDADES Y TEOREMAS AUXILIARES.

A continuacion, se presentan las definiciones, propiedades
y teoremas auxiliares que constituyen el marco preliminar de
este trabajo, proporcionando las herramientas necesarias para
la formulaciéon y demostracion del teorema principal, y
garantizando tanto su consistencia interna como la unicidad de
su enunciado.

Definicion (Def.) 1.- Matriz Jacobiana [2]:
Sea F: U € R™ - R™ una transformacién diferenciable de
clase €, con

F(uq, Uy, ooy Uy) = (X4, X3, e\ Xp)

La matriz jacobiana de F se define como:
Jr@) = [0x;/ 0wl _, e

El determinante de esta matriz se denomina determinante
jacobiano y se denota por:
0(xq, ey Xp)

O(uy, «on ) Uy)

= det(Jr(w) (2)

Def. 2.- Coordenadas hiperesféricas [3]:
Todo punto (x4, ..., x,)e R™ puede expresarse mediante un
radio p = 0y angulos ¢, ..., p,_, € [0, 7], 0 € [0,27] segun:
j-1

Xj=p Hsincbk cosp;j, 1<j<n-2 (3)

k=1

n-2
Xp_1=0p (1_[ sin q;k) cos 6 4

k=1

n-2
X, =P <1_[ sin q>k> sin8 5)

k=1

Esta parametrizacion corresponde a la descripcién estandar
de la esfera unitaria S"~! c R?, construida inductivamente a
partir de proyecciones sucesivas en subesferas de menor
dimension.

Def. 3.- Jacobiano en coordenadas hiperesféricas [3]:
El determinante jacobiano correspondiente al cambio de
coordenadas hiperesféricas en R™, con parametros >0 y
angulos ¢y, ..., p,,_, € [0,7], 0 € [0,27] estd dado por:

n-2
J(p, by, ey bp—p, €) = p" 77 H(Sin P (6)
k=1

De esta manera, el elemento de volumen se escribe como:

n-2

av =" | [Gsing 1 doddy - ddrd8 (7)

k=1

Def. 4.- Condicion de interseccién de dos esferas en R

[4]:

Sean dos esferas S(Cy, 1,), S(C,,15) en R™con centros

Cy, C,e R™ yradios ry, 7, > 0. Denotemos por d = ||Cy, C, |
la distancia entre sus centros. La interseccidon de las esferas
es no vacia y de dimension n si y solo si se cumple la
desigualdad

|T‘1—7”2|<d<7”1+7'2 (8)

Teorema (Teo.) 1.- Cambio de variable en integrales
multiples [2]:

Sea U < R™ un conjunto abiertoy F : U - R™ una
transformacion de clase C?, inyectiva casi en todas partes,
cuyo determinante jacobiano es continuo y no nulo en U.

Si f: F(U) - R esintegrable, entonces se cumple la
siguiente igualdad:

fQxq, ey xy) dxq - dxy,

F(U)
(X1, ey Xp)

= fo(F(ul, ...,un)) ‘detaw” ) duy - du, 9

IVV. DEFINICION DE LA HIPERLUNULA EN R™

Def. 5.- Region Hiperlanular en R™;
Sean S(04,1,), S(0,,1,) dos esferas en R™ con centros O y
radios r tal que cumplan con la condicién de interseccion
(Definicion 4).
La hiperldnula asociada a S(0,,r;) respecto a S(0,,13)
se define como la region
2(0,10;) ={w €B(0,1): llw = 03l =13},

donde BO,r) ={weR™|lw—0| <r},a lo que
denominaremos la bola sélida de centro C; y radio r;.

Sea, la porcion de la hiperesfera S(0,, ;) delimitada por el
casquete generado por la interseccion con S(0,,1;). Desde el
punto de vista geométrico, la regidn hiperlinular puede
interpretarse como una porcién de hiperesfera sélida privada
de un subconjunto inducido por la interseccidn, lo que da lugar
a una configuracion con contribuciones de curvatura efectiva
negativa asociadas al casquete excluido [11]. En la Figura 2 se
observa la configuracion correspondiente a una region
hiperltnular en R3.

V. TEOREMA

Sea 2( 0, | 0,) laregion correspondiente a la hiperlinula
delimitada por dos hiperesferas de centros 0,,0, y radios
11, 1y, respectivamente.

El volumen n —dimensional de la region Hiperlinular Q se
obtiene a través de la integral multiple:

y™ = f dy (10)
Q

VI. DEMOSTRACION

Para iniciar, expongo el cambio clasico de coordenadas
en R*, que constituye el punto de partida esencial del presente
trabajo y se encuentra descrito en la Definicion 2.

an

Wy = pCosy; ,w, = psini,
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Para evitar ambigliedades en la notacion, aclaro que con w
designo de manera general a las coordenadas cartesianas
(w4,...,w,), mientras que con i represento a los angulos
introducidos en el proceso de parametrizacion,
independientemente de su subindice particular. La Unica
variable que permanece invariable en todos los casos es p,
entendida como la magnitud radial asociada a la distancia al
origen.

Con las convenciones anteriores, paso ahora a mostrar la
formulaciéon explicita del cambio de coordenadas en los
siguientes entornos. En primer lugar, presento el caso
tridimensional R3, donde las coordenadas se expresan en
términos de la magnitud radial p y dos angulos ¥, lo que
corresponde al sistema esférico clasico.

wq = pSsiny, cosyP, ,w, = psiny, sinp,,
w3 = pCoS Y, (12)
Posteriormente, extiendo este mismo esquema al espacio
R*, en el cual interviene un angulo adicional que multiplica a
los factores trigonométricos previos, dando lugar a la
parametrizacién hiperesférica.

wq = p SinyYs sinyY, cos P, ,w, = p sinP; sinp, siny,
w3 = pSsinysz cosP, ,w, = pcosPs 13)

Se observa un patrén consistente en el desarrollo de cada
variable al pasar de un entorno R*'a un R". A partir de este
analisis, he formulado una variante propia para el cambio de
variable, la cual mantiene equivalencia con la parametrizacion
hiperesférica estandar de la Definicién 2, pero cuya notacién
resulta mas clara y sencilla de interpretar en el marco de este
trabajo. En consecuencia, presento a continuacion la expresién
generalizada que utilizaré en el desarrollo del teorema.

Def. 6.- Coordenadas hiperesféricas generalizadas:
Todo punto (wy, ..., w,)e R™ puede expresarse mediante un
radio p = 0y angulos v, ..., Y,,_, € [0,2m] segln:

n-2
p [H sinl[zkﬂ] cosy,, i=1

k=1

n-2
p [1_[ sin w,m] siny,, i=2

14 (14)

n-3
p l sin1/)k+z] cosPn—2, LEZT, i>2,i#n
k=1

pcosyPn_1;i €LY, i>2,i=n

Esta parametrizacion corresponde a la descripcion estandar
de la esfera unitaria S"~! c R2, construida inductivamente a
partir de proyecciones sucesivas en subesferas de menor
dimensién. [3]

Para sustentar el cambio de coordenadas en el entorno R*,
comienzo mostrando el calculo explicito del determinante
jacobiano asociado.

a(wl' Wy, W3, w4) _
9(p, Y1, %2, 13)

—p siny; sin, sinyp,
p siny; siny, cosy,

](Pv¢1'¢2v¢3) =

p cos s sin, cosp,
p coss siny, siny,
p coss siny,
=p sinyy

p sins cosp, cosp,
p siny; cosp, siny,
—p sinp; sinyp,

0

sin; siny, cosp,

siny; siny, siny,
siny; cosp,

cos; 0

(15)

A partir de la matriz construida con las derivadas parciales
de las transformaciones hiperesféricas, se obtiene el factor de
escala que permite convertir integrales en coordenadas
cartesianas a integrales en coordenadas hiperesféricas.

(16)

a(x,y,z,w
‘ .y, 2,w) = p3sin? i, siny,

(P, Y1, %2, 93)

Este procedimiento garantiza que la medida diferencial
refleje correctamente la geometria del espacio de cuatro
dimensiones, constituyendo un paso fundamental para la
generalizacion posterior. Una vez obtenido el resultado en R*,
conviene comparar el factor jacobiano con los casos de menor
dimension.

En RZel determinante se reduce a:

Jp, 1) =p (17)
Mientras que en R3 se obtiene:
J(p. 1, ;) = p? sinyp, (18)

La expresion halladaen R* (18) muestra con claridad que
existe un patrén recurrente: en cada dimension aparece la
potencia correspondiente de la variable radial, acompafiada de
productos de senos con exponentes decrecientes. Esta
consistencia refuerza la validez del método y evidencia que el
proceso no es arbitrario, sino que responde a una estructura
general.

De la comparacién anterior se desprende una expresion
general para el determinante jacobiano en R™. Este resultado
se fundamenta en la Definicién 3, de la cual parto para
formular la generalizacion, adaptandola ademas a la notacion
propia que adopto en este trabajo. Asi, el factor de escala
queda dado por la potencia p™ 1, multiplicada por un producto
de senos de los angulos introducidos en la parametrizacion. De
este modo, se obtiene un jacobiano Unico y sistematico,
aplicable a cualquier dimension, lo cual permite consolidar la
formulacion integral de los volimenes n —dimensionales de
hiperlinulas.

n—2

Ko i) = p" [ Jsingg)"™ ™ m (19
k=1

Con base en la Definicién 3y 5, es posible establecer ahora
el elemento diferencial de volumen en R™.
Def. 7.- Jacobiano  Unico volimenes
n —dimensionales de hiperlinulas:
El determinante jacobiano correspondiente al cambio de
coordenadas hiperesféricas en R™ con base en la definicion 5,

e Ga0 PO (... ) = S

para

De esta manera el elemento de volumen n —dimensional se
escribe como:

n-—2

aw = pt | [Gsinw) 1 dpdipy - dipnodpy 0 (20)
k=1

Finalmente, es necesario sefialar que la validez de la regién
Q depende de que las hiperesferas consideradas en R"
satisfagan las condiciones establecidas en la Definicion 5.
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Con todos los elementos previamente establecidos, es
posible formular la integral que proporciona el volumen n-
dimensional de la hiperlinula delimitada por hiperesferas
en R™. La expresién queda dada por:

W= [ [ Hobi i) dodi sy @D
Q(C41C2)

De este modo, la expresién puede presentarse en forma
funcional reducida como:

Vf’”:fdtp S
Q

Donde VL(") corresponde al volumen n-dimensional de la
hiperldnula.

De esta manera, la construccion se encuentra completa: la
integral general obtenida constituye una formulacién Unica,
consistente y aplicable a cualquier dimensién. Con ello, queda
demostrado el Teorema de las hiperlinulas, estableciendo un
marco integral definitivo para el calculo de volimenes n-
dimensionales generados por intersecciones de hiperesferas.

Con el fin de aportar una intuicion visual acerca del objeto
en estudio, en la Figura 3, 4 y 5 se presenta una representacion
gréfica de una hiperlinula en R™. Si bien no corresponde a una
construccion geomeétrica estricta, la ilustracién permite sugerir
la estructura espacial que caracteriza a este tipo de regiones.

El resultado se fundamenta en la extension de las
construcciones bidimensionales hacia espacios de dimension
arbitraria, utilizando herramientas de calculo vectorial y
cambios de variable en integrales multiples mediante
coordenadas esféricas e hiperesféricas. Este procedimiento no
solo garantiza la existencia y unicidad de la solucién, sino que
también asegura la consistencia interna del método. Al no
depender de la forma especifica de los casquetes que delimitan
las hiperlunulas, la formulacion adquiere un caracter
plenamente general, capaz de abarcar en un mismo marco
tanto los casos particulares ya conocidos como su proyeccion
a dimensiones superiores.

VII. EScoLIO (INTERPRETACION GEOMETRICA Y DEFINICION
TEXTUAL DE LA HIPERLUNULA).

En el estudio de las configuraciones geométricas generadas
por la interseccién de dos esferas en R™ (véase la Figura 1 para
una representacion del caso tridimensional), la atencion suele
centrarse en la region comun delimitada por ambas. Sin
embargo, dicha regién no constituye el objeto de interés en el
presente trabajo.

En efecto, cada esfera determina, a partir de la otra, una
porcion propia delimitada por el casquete inducido por la
interseccion. Estas porciones, que constituyen subconjuntos
volumeétricos diferenciados y no coincidentes con la region de
interseccion, serdn denominadas en lo sucesivo hiperltnulas o
regiones hiperlanulares.

La introduccidon de este concepto resulta esencial para
extender los métodos de calculo integral previamente aplicados
a ldnulas planas a un marco de dimension arbitraria,
permitiendo una formulacién geomeétrica y analitica coherente
en R™.

Desde una perspectiva geométrica mas amplia, la
hiperlinula puede entenderse como una region cuya estructura
resulta de una hiperesfera dotada de un “hueco” inducido por

la interseccion, lo que introduce una contribucién de curvatura
negativa asociada a la porcién excluida. Esta caracteristica la
vincula naturalmente con consideraciones propias de la
geometria conformal [10], en la medida en que la eliminacion
del casquete altera la estructura angular local sin depender de
una métrica especifica. En este sentido, la hiperlinula
constituye un objeto geométrico hibrido cuya interpretacién
trasciende el marco puramente euclidiano, resultando

compatible con enfoques conformes en dimension arbitraria.

Fig. 1 Representacion en R3de dos esferas intersectandose. La interseccion
genera dos regiones hiperltnulares, una asociada a cada esfera.

Fig. 2 Visualizacion en R3de una hiperldnula individual.

Fig. 3 Representacion grafica de una hiperltnulaen R™.

13



Journal de Objetos y Objetivos Matematicos No. 13; julio-diciembre 2025.

ISSN 2683-264X. https://joom.org.mx

Fig. 4 Representacion grafica del esqueleto de una hiperlinula en R™.

Fig. 5 Representacion gréafica del esqueleto de una hiperlinula en R™ vista
superior.

VIIl. PROBLEMA DE HIPERLUNULA EN R?

Enunciado. Determinar el volumen de la hiperlinula en R3
delimitada interiormente por la esfera (Véase la figura 4):

Six?+y*+(z-2)2=4 (22)
y exterior a la esfera:

Syixt+yt+z2=4 (23)

Fig. 4 Representacion visual de apoyo para el problema enunciado.

Desarrollo.
En primer lugar, identificamos los datos geométricos
implicitos en las ecuaciones dadas:

La esfera S, tiene centro 0,(0,0,2) y radior; = 2
La esfera S, tiene centro 0,(0,0,0) y radio r, = 2

Ademas de expresar el dominio en su sistema de
coordenadas original, el cual corresponde a coordenadas
rectangulares:

D={(xy2)eR¥x*>+y2+ (2—2)2 <4A x?>+y? + 2% > 4}

La distancia entre los centros es:

d=110,=0,ll=/(0-0)2+(0-0)2+(0-1)2=2 (24)
Se procede a verificar la condicion de interseccién establecida
en la Definicion 5, |r; — | < d <1, +r, . Es decir:
[2-2]<2<2+2, (25)
la cual se cumple. Esto garantiza que ambas esferas
efectivamente se cortan, de modo que la regién Hiperlanular
esta bien definida.
Para localizar la superficie de interseccion, se parte de la
ecuacion (22).

x2+y2+(z—-2)2 =4, (26)

que se desarrolla como:
xP+y*+z2—4z+4=14 (27)
x24+y* 422 -4z=0 (28)

Por otro lado, con la ecuacién de S, (23) se sustrae de la
expresion desarrollada (28) de la segunda, obteniendo:

(P +y*+z8)—(x*+y*+2z°—42) =4-0 (29)

lo que conduce a:
4z=4=z=1 (30)
Esto indica que la interseccion de ambas esferas ocurre en
el plano horizontal z = 1. Sustituyendo (30) en la ecuacién de
S, (23) se determina la curva de interseccion:

x2+y*+12=4 = x*+y*=3 (31)

Por lo tanto, la seccion de corte es una circunferencia de
radio r = +/3 centrada en el origen, situada en el plano z = 1.
Con esta caracterizacion geométrica del dominio, se
procede a efectuar el cambio de variables a coordenadas
esféricas, utilizando la notacién introducida en (12) y (18), con
el propdsito de expresar la region de la Hiperlinula en los
términos establecidos en la Definicion 5.
Siendo el cambio de coordenadas:

wq =psiny, cosP; ,w, = psiny, siny,,

w3 = pcosyP, (32)
Teniendo el Jacobiano asociado:
J(o, 1, 92) ZPZ siny, (33)

Cabe sefialar que, al trabajar en coordenadas esféricas, la
proyeccion de la interseccion (30) corresponde a una
circunferencia completa, por lo que el angulo asociado i,
recorre el intervalo [0,27]. (Véase la Figura 5)

0<y, <2m (34)
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Fig. 5 Vista de corte de las dos esferas, que permite apreciar la circunferencia
de interseccion y la delimitacion de las regiones hiperlinulares.

Para el siguiente angulo v, , se efectuara el cambio de
variable indicado en (32) dentro de la expresién deS;
desarrollada (28). Dado que S; es la esfera que contiene
internamente a la hiperlinula, y que p representa el radio
vector trazado desde el centro de S, hasta su casquete, resulta
necesario determinar el intervalo angular que dicho radio
vector recorre.

W+ w2+ w3 —4w; =0 (35)

A partir de (32), y tras efectuar los cambios
correspondientes, se obtiene la expresion clasica de las
coordenadas esféricas:

(1)12 + (1)22 + (1)32 = pz (36)
Sustituyendo (36) en (35) la expresion se reduce a:

p?2—4pcosp, =0 = p(p — 4cosyp,) =0 37

De lo anterior se concluye que el parametro de entrada es

p = 0y el parametro de salida es p = 4cosy, . No obstante,

debido a la configuracién geométrica de este problema (véase

la Figura 6), se descarta el valor p = 0, quedando el intervalo
de p:

2 < p < 4cosy,

(38)

Fig. 6 Vista de conveniencia utilizada para facilitar la comprension del
procedimiento de resolucion del problema.

A partir de (38), y aplicando el método que se considere mas
adecuado para determinar el recorrido del angulo vy, , se
obtiene directamente su intervalo correspondiente.

0<y, <

wl

(39

Se procede ahora a definir el dominio de la hiperlinula en
R3.
0 ={p Y1, ¥,)eR*2<p <4cosy,,0 <P, <2m,0

s
<9, <3} (40)
A partir de (20) se introduce el diferencial d¥:

d¥ = p?sintp; dp di,dy,, (41)
Considerando los cambios de variables establecidos en (32),
el diferencial denotado en (41) y el dominio descrito en (40),
la integral adquiere su forma explicita, correspondiendo
precisamente al enunciado del Teorema de las hiperlinulas.

21 % 4cosy,
VL(3) = J- av Zf f f p?siny, dpdy,dy; (42)
Q 0 0 J2

La integracion radial se realiza de forma directa,
produciendo una expresién polinémica en cosy,, mientras
que la integracion angular aprovecha la simetria del dominio y
la separabilidad del factor siny;. El procedimiento es
elemental, aunque algebraicamente extenso, por lo que se
omiten aqui los detalles intermedios.

El resultado final conduce al volumen hiperlanular:

22T
VL(n) — 3 u3

(43)

Este teorema guarda plena concordancia con el método
clasico de cambio de variables en coordenadas esféricas
cuando se trabaja enR3. [6] El hecho de que en tres
dimensiones se recupere la formulacién tradicional constituye
un indicador de validez, el cual, bajo el cambio de coordenadas
propuesto en este trabajo, coincide con el caso de coordenadas
esféricas clésicas. En consecuencia, el teorema se establece
como un resultado consistente en baja dimension y, al mismo
tiempo, como una formulacion robusta que admite su extension
natural a espacios de dimension arbitraria.

IX. COROLARIO

Con el proposito de reforzar la validez del Teorema de las
hiperldnulas y mostrar su coherencia con los casos particulares
previamente conocidos, se enuncia a continuacién un corolario
en dimensién reducida.

Corolario 1 (Teorema de unificacion integral en R? con
cambio de coordenadas).

El Teorema de las hiperlinulas admite como caso particular
la dimension bidimensional, en la cual la regién Hiperlunular
se reduce a una lunula clésica en el plano.

A, =VP = f dy (44)

Al aplicar el cambio de coordenadas a este caso particular,
se observa que la transformacion coincide con el cambio a
coordenadas polares clasicas en R?. En consecuencia, la
formulacidn general del presente teorema reproduce como caso
especial el método previamente desarrollado por el autor para
el célculo integral de lunulas en el plano, mostrando que dicho
procedimiento queda naturalmente integrado dentro del marco
n-dimensional establecido aqui.
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Corolario 2 (Caso particular del teorema fundador).

Cuando el arco exterior corresponde a una
semicircunferencia, la regiébn A queda delimitada por la
circunferencia principal y la recta que contiene al diametro de
dicha semicircunferencia. En este caso, el resultado del
teorema anterior se simplifica a la expresion:

r2
A, = VP = n[z—]—f dw (45)
A

En esta expresion, el primer factor, que originalmente se
escribia como Ax? + Ay?, al trabajar con circunferencias se
reemplaza de manera explicita 4r2, para ajustar le expresion
por la justificacién planteada en el caso original. El factor
restante corresponde a una integral que se desarrolla en el
mismo sistema de coordenadas planteado en el Corolario 1.
Dicha expresion es equivalente a la formulacion obtenida en
[1], integrando asi el teorema base como una consecuencia
natural de la generalizacién propuesta.

X. CONCLUSIONES

La validez del Teorema de las hiperlinulas en el calculo de
volimenes n-dimensionales queda establecida al generalizar,
en una sola formulacién, los escenarios derivados de
intersecciones de esferas en R™. Esta extension unifica
rigurosamente los casos particulares estudiados en
dimensiones menores, mostrando que bajo cualquier
configuracién admisible la representacion integral converge a
una expresién comun, lo que asegura su aplicabilidad en
contextos arbitrarios.

La consistencia del teorema se fundamenta en el uso
preciso de las definiciones, propiedades y teoremas auxiliares
presentados en las Secciones Il y 1V, los cuales garantizan la
coherencia légica del sistema. A su vez, la unicidad de la
solucion se establece al demostrar que, para cualquier
conjunto de datos iniciales, la region Q conduce de manera
inequivoca a la misma representacion integral,
independientemente de la dimensién considerada.

Un rasgo distintivo de este trabajo, en contraste con
resultados previos en R2, es que la formulacion actual
trasciende el calculo de la medida bidimensional inducida de
linulas y se proyecta hacia volimenes e hipervolimenes,
apoyandose en técnicas de calculo vectorial y en el uso
sisteméatico de coordenadas esféricas e hiperesféricas. Esto
proporciona un procedimiento integral exacto, libre de

ambigliedades, que amplia y consolida la linea de
investigacion previamente iniciada en el plano.

Desde wuna perspectiva metodolégica, el resultado
representa un avance significativo en el estudio de

configuraciones curvilineas de alta dimension, mostrando que
el calculo de volimenes de hiperltnulas puede resolverse de
manera unificada dentro del formalismo matematico moderno,
sin necesidad de recurrir a aproximaciones geomeétricas
externas. Con ello, se sientan las bases para extender el
método hacia otras intersecciones de cuerpos curvos en
espacios de mayor dimension, consolidando un marco teérico
general caracterizado por rigor, precision y elegancia.

En consecuencia, el teorema aqui presentado no solo
garantiza consistencia y unicidad, sino que también ofrece un
sistema flexible de aplicacién, capaz de recuperar casos
particulares en dimensiones menores y proyectarse hacia
dimensiones arbitrarias. Asi, se constituye como una

formulacion integral definitiva para el célculo de volimenes
n-dimensionales de hiperldnulas.
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Resumen- En este trabajo se presenta un teorema generalizado
para el céalculo integral de la medida bidimensional de lGnulas en
RZ. La construccién se fundamenta en un procedimiento de
barridos geométricos y en el empleo de herramientas de calculo
vectorial, lo que permite unificar en una sola formulacion los tres
escenarios posibles: regiones sin subdivision, con subdivisién en
dos partes y con subdivision en tres. Con ello se superan las
restricciones tradicionales impuestas sobre el arco exterior de la
linula y se amplia el resultado de un teorema previo limitado al
caso de la semicircunferencia. Se establecen la unicidad y
consistencia del teorema, garantizando su validez en un amplio
rango de configuraciones geométricas, y se presentan ademas
corolarios que simplifican su aplicacidon en casos particulares,
incluyendo el problema clésico de Hipocrates.

Palabras Clave- célculo vectorial, barridos geométricos,
linulas, areas en R?, teorema, geometria integral.

Abstract- This work presents a generalized theorem for the
integral computation of the bidimensional measure of lunes in
R2. The construction relies on a geometric sweeping procedure
and the use of vector calculus tools, allowing the unification of
three possible scenarios: regions without subdivision, regions
subdivided into two parts, and regions subdivided into three. In
this way, the classical restrictions imposed on the outer arc of the
lune are overcome, extending a previous theorem restricted to the
semicircular case. The uniqueness and consistency of the theorem
are established, ensuring its validity across a wide range of
geometric  configurations. Furthermore, corollaries are
presented that simplify its application in particular cases,
including the classical problem of Hippocrates.

Keywords- vector calculus, geometric sweeps, lunules, areas in
RZ?, theorem, integral geometry.

Mathematical Subject Classification: 51M04, 26B15,

28A25, 52A38.

I. INTRODUCCION

El estudio de las lunulas ha ocupado un lugar significativo
dentro de la geometria desde la Antigliedad, particularmente a
partir de los trabajos de Hipdcrates de Quios, quien explor6 la
posibilidad de cuadrar figuras curvilineas mediante
construcciones geométricas. Con el desarrollo del céalculo
integral y del analisis vectorial, el interés en estas figuras ha
resurgido en el &mbito contemporaneo, no solo por su valor
historico, sino también como un terreno fértil para explorar
métodos generales de integracion sobre dominios limitados
por arcos de circunferencia.

En un trabajo previo se formula un teorema para el célculo
general de areas de lunulas con arco exterior igual a una
semicircunferencia mediante geometria integral [1]. Alli se
establecid, que si la ldnula estaba delimitada por un arco

semicircular de didmetro igual a /4x? + Ay? y una adicion
de funcionales de areas concretas, la medida plana puede
expresarse mediante la ecuacion:

[v— ar
Ax? + Ay?
A, = n[x'+y]—z ka(x)dx )
| Lmed |

Dicho resultado constituyé un avance importante al
sistematizar el procedimiento de calculo en un caso particular,
pero presentd restricciones inherentes a la forma de los arcos
que definian la lunula. Estas limitaciones evidenciaron la
necesidad de un marco mas general que no dependiera de
condiciones especificas, abriendo la posibilidad de formular
un método aplicable a configuraciones mas diversas.

En este sentido, el presente articulo introduce un teorema
generalizado para el calculo integral en el célculo de la medida
bidimensional de lGnulas en RZ% Para su desarrollo se
construye un algoritmo basado en técnicas de barridos y en el
uso de herramientas propias del calculo vectorial, lo que
asegura la aplicabilidad del método sin restringirse a una
configuracién particular de los arcos. Asimismo, se demuestra
la unicidad del algoritmo propuesto y se establece una
formulacién que garantiza consistencia en contextos
geométricos diversos. Con ello, se amplia el marco teérico
disponible para el estudio de figuras delimitadas por arcos de
circunferencia, ofreciendo un resultado de caracter general y
de mayor alcance que el previamente obtenido.

Il. PROPIEDADES Y TEOREMAS AUXILIARES

A continuacion, se presentan herramientas fundamentales
que serviran como soporte para la formulacién del teorema,
garantizando su consistencia interna y la unicidad de su
enunciado.

Propiedad (Prop.) 1.- Linealidad de la integral [2]:

Sean f,g:R — Rfunciones integrables y sean a,beR.
Entonces:

]f (af () + bg(x,y)) dA = a jj FGoy)dA+b jj glry)da @)

Prop. 2.- Propiedad dominante (criterio de comparacion)

[3]:

Si f,g: R = R son funciones medibles y se cumple que:

17


mailto:ornelas.tapia.jonathan@gmail.com
https://orcid.org/0009-0004-6497-2017

Journal de Objetos y Objetivos Matematicos No. 13; julio-diciembre 2025.

ISSN 2683-264X. https://joom.org.mx

lfCe. N <gy) V(xy)eR 3

Donde g es integrable en 2, entonces f también es integrable
en Ry se cumple:

ﬂRf(x,y) dA

Prop. 3.- Subdivisidn del dominio [4]:
Sea R < R? una regidn que puede expresarse como union
disjunta de subregiones medibles R,,R,,R5,...,R,. Si f es
integrable en R, entonces:

ffRf(x,y)dA = ffR f(x.y)dA=ffR f(x.y)dA+---+ffR fx,y)dA  (5)

Teorema (Teo.) 1.- Teorema de Fubini [5]:
Sean f: R — R continua en una region de tipo | o de tipo II.

< f g(x,y) dA )

SiResdetipol:

R={(,)]g:1(x) <y < g,(x),a < x < b}
g,
b
,y) dA = y)dy |d 6
[rena=[{ [ renae  ©

gl(x)
Si R es de tipo II:

R={(t»Ih() sx<h()c<sy<d}

hy ()
ff fxy)da = f ’ ny feeyydx |dy ()

hi()

I11. TEOREMA [1]

Sea una lunula delimitada por dos arcos de circunferencia
en el plano R2. Entonces, la medida bidimensional de la lnula
puede calcularse mediante las siguientes expresiones:

Para una region de Tipo | sin subdivision de su dominio:

0 ={(x,y) € R*| C1(x) Sy < C2(x); p; Sx < p,}

AL = ﬂﬂdA o ®)

Para una regién de Tipo Il sin subdivisién de su dominio:

2={(xy) eR*) C:()) Sx<C,(»); p, <y <p,}

4, = ff dA o 9)

Para una regiéon de Tipo | o Il con subdivision de su
dominio:

n
k=1

10

4, = ﬂdA= E f dA
0 0,
k=1

IV. DEMOSTRACION

Sean C;, C, circunferencias que se intersecan en un par de
puntos. Denoto por C; la curva que delimita el espacio
geométrico donde inicio el barrido, y por C, aquella donde
dicho proceso concluye. Posteriormente, designo por p; Y p,
los limites numéricos de integracién asociados a la regién
encerrada.

Se concibe a la ldnula como la region formada por dos
circunferencias, donde una permanece fija mientras la otra se
traslada a lo largo de su contorno, generando asi infinitas
configuraciones posibles. No obstante, es suficiente destacar
tres casos principales, los cuales permiten obtener un
panorama completo del problema.

Caso | (Regiones sin subdivisién del dominio):

Sea el caso en el cual la configuracion de posiciones de
ambas circunferencias permite describir a la region 2 como
una sola entidad sin necesidad de subdivision como se ilustra
en la Figura 1.

En particular, si se trabaja con una region de tipo I, 12 est4
acotada por los arcos C; y C,, con limites de integracién en el
eje correspondiente dados por p; Y p,.

En consecuencia, de acuerdo con el Teorema 1 enunciado
en la seccion 111, la region 2 se describe mediante la siguiente
formulacién integral para una regién de tipo I:

2={(x,y) €R* C1(x) Sy < C(x); p; Sx < p,}

Analogamente la formulacion integral para una regién de
tipo Il:
0={(x,y) ER*| C1() Sx < C;(); p, Sy <p,}

Siendo 12 el funcional de &rea de la lGnula.

4= ffﬂdA

Caso Il (Regiones con subdivision en dos partes del
dominio):

Sea el caso en el cual la configuracidn de las circunferencias
obliga a descomponer la regién 2 en dos subregiones, de modo
que cada una pueda expresarse adecuadamente como region
de tipo | o de tipo Il, seglin se muestra en la Figura 2.

o (11

En este escenario, la Propiedad 3 garantiza que:

N=0,00;; 2,00 =0 #))

4 = ffndA=ﬂﬂldA+fﬂsz

Siendo 12 la expresion para calcular
bidimensional de la ltnula.

o (12)

la medida

En particular, la subdivisién surge debido a que los arcos C;
y C, intercambian sus roles como limite superior o inferior (0
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izquierdo y derecho) a lo largo del dominio, generando un
punto de transicion natural que exige la particion.

Caso 11 (Regiones con subdivisién en tres partes del
dominio):

Este caso constituye una extension del Caso I, en el que la
region 2 requiere descomponerse en tres subregiones en lugar
de dos. La necesidad de esta subdivision adicional surge de la
interaccion geométrica de los arcos C; y C,, lo que impide
describir 2 como una Unica regién de tipo | o Il. Véase la
Figura 3.

Asi, aplicando la Propiedad 3, se obtiene:

A, = ﬂndA=ﬂ dA+f dA+f dA o (13)

Reunidos los resultados de los tres casos analizados, se
observa que todos pueden integrarse en una Unica formulacion
general. En efecto, independientemente de que la regién 2 se
describa sin subdivision, o bien como la unién de dos o tres
subregiones, la medida plana de la ltnula queda determinada
por la misma expresion integral.

De este modo, se establece la ecuacion final del Teorema,
la cual unifica y generaliza los distintos escenarios
considerados:

n
n:Unk,ni no =03+
k=1

4, = ffdA: E f dA .
0 O,
k=1

Donde k € N es un indice de enumeracién que recorre las
subregiones disjuntas €, con 1 <k<n, y donde ne€
{1,2,3} corresponde al nimero de subregiones en cada uno de
los casos analizados.

V. COROLARIO

Corolario 1 (Expresion alternativa del area de la
I4nula).

El funcional de area de la linula delimitada por los arcos C;
y C,, puede calcularse de manera equivalente mediante la
siguiente expresion:

n
Ax? + Ay?
4 = o AT Zf dA
4 W,
k=1

El razonamiento se basa en observar que la linula puede
interpretarse como el area de una circunferencia completa
menos la seccién determinada por la interseccion de ambas
circunferencias. En consecuencia, dicha diferencia conduce de
manera directa al funcional de &rea buscada.

(14)

Corolario 2 (Caso particular del teorema previo).

Cuando el arco exterior corresponde a una
semicircunferencia, y empleando el razonamiento del
Corolario 1, laregion A queda delimitada por la circunferencia
principal y el diametro de la semicircunferencia. En este caso,
el resultado del Teorema previo se simplifica a la expresion:

n
Ax? 4+ Ay?
4, = "M‘E:f dA
8 A
k=1

Dicha expresién coincide con la formulacién obtenida en
[1], integrando asi el teorema previo como consecuencia
natural de la generalizacion actual.

(15)

VI. EscoLio

Fig. 1 Esquema ilustrativo del Caso I, donde la region
se describe como un Unico dominio sin necesidad de subdivisiones.

Fig. 2. Esquema ilustrativo del Caso I, en el cual la regién debe
descomponerse en dos subregiones para ser representada como region de
tipo I o tipo Il

Fig. 3. Esquema ilustrativo del Caso Ill, donde la region se subdivide en tres
partes, requiriendo un tratamiento integral mas general.
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VII. PROBLEMA DE LUNULA EN R?

Con el propésito de ilustrar la aplicabilidad del teorema
desarrollado, presento a continuacién un problema clasico de
la geometria: el célculo de la medida bidimensional de una
lunula atribuida a Hipécrates de Quios.

Enunciado. Calcula la funcional del area de la linula
formada por la arista de un poligono regular de 4 aristas
circunscrito a una circunferencia de centro (3,0) y radio de 2u
y delimitado superiormente por una semicircunferencia.
Como se muestra en la Figura 4.

Fig. 4. llustracion esquematica del problema planteado.

Denoto como C; a la circunferencia mayor con centro 0, =
(3,0) y radio de 2u, y por C, a la semicircunferencia cuyo
diametro corresponde a la arista del poligono inscrito en C;.

Expreso a C; y a C, mediante sus respectivas ecuaciones
analiticas, siendo:

Ci:(x=3)2+@w)?*=4
Cr(x=2)2+@y-12=2

(16)
(7)

Determino que, por la configuracion geométrica de la
lunula, resulta indiferente trabajar con una region de tipo | o de
tipo I, dado que en ambos casos no es posible describir la
medida bidimensional completa como una Unica regién sin
subdivisiones. Para efectos del desarrollo, opto por trabajar con
una region de tipo Il. Defino entonces:

N=0,Nn0; 0,00 =0 ([ #))
0 ={(xy) ER*| ha() S x < My (¥); p, Sy < p,}
02; ={(x,y) e R?| ha(y) < x < hy(v); p, <y < p3},

Donde h,(y) y a h,(y) representan las fronteras inducidas
por los arcos C; y C,, Y p1, p2, p3, son los limites numéricos de
integracion en el eje y.

La expresion para el calculo de la regién por la integral
viene dada por:

4, = ffdA:f dA+f dA
0 2, 2,

Y su expresion explicita:

(18)

AL=

py [ rh1 ) p3 [ rha®)
f (f dx>dy+f <f dx)dy (19)
p1 \Vho(») py \Vha()
De 16 y 17 se obtiene h; y h;:

hi(y) = +4/4 —y* +3

h,(y) = £y2 - (y—1)* +2

(20)
(21

Los valores de los limites numéricos de integracion dados
por p;, p, p3 €n este caso particular se determinan a partir de
la interseccion de los arcos C, y C, (para p; Y p;) Yy del punto
maés alto de la circunferencia C, (para p3). Existen diversos
procedimientos para calcularlos; sin embargo, dado que todos
conducen al mismo resultado y no constituyen el foco del
presente trabajo, omito su desarrollo detallado y me limito a
sefialar  directamente el intervalo de integracién
correspondiente.

El dominio de la regién queda definido por
D={(x,))eER?| =2 —(y—1)2+2<x<—/4 —y2+3;0<y
<2 u{(x,y)ER? -2 —(y—-1)2+2<x
<V2-(-1D2+22<y<1+v2),

y la expresion para el calculo de su medida plana viene dada

por:
2 —J4-y%+3 1+V2 2 —-(y-1)2+2
f f dx |dy + J. f dx |dy (22)
0o \/-/2=G-D?%+2 2 —2-G-D%+2
Finalmente, al resolver esta formulacion se obtiene que el
valor de la integral sobre la region de la Itnula es de 2u?.

En este caso particular, la medida bidimensional obtenida
para la ltunula coincide con la del tridngulo rectangulo formado
por la arista del poligono y las perpendiculares trazadas desde
sus extremos hasta el centro de la circunferencia C; . Este hecho
es consistente con el teorema clasico de las lanulas de
Hipdcrates, segun el cual determinadas IUnulas poseen una
medida plana exactamente igual a la de un tridngulo rectangulo
construido a partir de los radios de la circunferencia. Asi, el
resultado obtenido no solo valida el procedimiento integral
aplicado, sino que también establece un puente entre el
enfoque moderno de calculo y la tradicién geométrica clasica.

Alternativamente, al aplicar directamente el Corolario 2
considerando una region de tipo |, el funcional de &rea de la
lUnula se obtiene mediante la expresion:

A={, ) eRx—1<y<4-(x-3)%,1<y<3}

n
Ax? + Ay?
4, = ”M‘E:f A
k=1

Al resolver esta formulacion bajo el planteamiento de
region de tipo I, se obtiene directamente el valor de la medida
plana, resultando en 2u?, este resultado confirma la
consistencia entre el método integral desarrollado previamente
y la expresion simplificada derivada del corolario.

(23)
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Cabe destacar que la eleccion del procedimiento para
calcular el funcional de area de una ltnula ya sea mediante el
teorema general propuesto en este trabajo, el teorema
formulado previamente, o bien a través de los corolarios aqui
establecidos depende en gran medida de la naturaleza del
problema, la complejidad geométrica de la configuracion
considerada y la conveniencia técnica de cada caso. De este
modo, el marco tedrico construido ofrece diversas rutas de
solucidn, todas ellas rigurosas, cuya seleccién final responde al
criterio matematico mas adecuado para el contexto especifico.

VI1I. CONCLUSIONES

La validez del Teorema de unificacion integral en el
calculo de los funcionales de éareas de lunulas queda
establecida al unificar en una sola formulacion los tres
escenarios posibles: regiones sin subdivisién, con subdivision
en dos partes y con subdivision en tres. Esta clasificacion
exhaustiva demuestra que, bajo cualquier configuracién de
arcos de circunferencia que conformen la lanula, el calculo
integral converge a una expresion comun, garantizando asi su
aplicabilidad general.

La consistencia del teorema se respalda en el uso riguroso
de las propiedades fundamentales enunciadas en la Seccion
Il, que aseguran la coherencia logica interna del sistema.
Asimismo, la unicidad de la solucidn se establece a partir de
la demostracion de que, para cualquier conjunto de datos
admisibles, la region o conduce de manera inequivoca a la
misma representacion integral, independientemente del tipo
de subdivision empleada.

Un aspecto distintivo de este trabajo, frente a mi teorema
previo limitado al caso en que el arco exterior fuese una
semicircunferencia, radica en que el presente desarrollo
elimina dicha restriccion y amplia el resultado hacia
configuraciones arbitrarias de arcos. Ademas, mientras que en
el enfoque anterior la implementacion préctica estaba sujeta a
un margen de estabilidad numérica limitada, en esta
formulacién los barridos verticales y horizontales permiten un
procedimiento exacto, libre de errores cuantizacion.

La introduccidn de los corolarios complementa este marco
tedrico al proporcionar vias alternativas y simplificadas de
resolucidn en casos particulares, como quedd demostrado en
la aplicacion al problema clasico de Hipocrates. De esta
manera, el trabajo no solo confirma la validez del resultado
general, sino que también exhibe su capacidad de recuperar
soluciones histéricas y de ofrecer procedimientos méas
eficientes cuando la configuracién geométrica lo permite.

Desde wuna perspectiva metodoldgica, el resultado
constituye un avance significativo en el estudio de las lunulas:
muestra que el calculo de sus medidas bidimensionales puede
resolverse integramente dentro del formalismo matematico
moderno, sin recurrir a aproximaciones ni a instrumentos
geométricos clésicos. Con ello, se sienta una base sélida para
la extension del método hacia otras configuraciones
curvilineas de interés, consolidando un marco tedrico general
que integra rigor, precisién y elegancia.

De este modo, el teorema aqui presentado no solo garantiza
rigor, consistencia y unicidad, sino que ademas ofrece un
sistema flexible de métodos ya sea mediante el resultado
general, su antecedente particular o los corolarios derivados,
consolidandose como una formulacidn integral definitiva para
el calculo de la medida bidimensional de ltnulas.
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Resumen- En el presente articulo propone la axiomatizacion del
modelo de colapso formal GRW (Ghirardi-Rimini-Weber) de
SLE (spontaneous localization events) mediante el concepto de
familias infinitas contables de estados cuanticos discretos
(CIFDQS) como una funcion de eleccién utilizando el axioma de
eleccion de Zermelo-Fraenkel; asi mismo se realiza una
simulacién del modelo matematico en QISKIT.

Palabras Clave- colapso formal, axioma de eleccién, SLE,
GRW, CIFDQS.

Abstract- In this article the axiomatization of the GRW
(Ghirardi-Rimini-Weber) formal collapse model of SLE
(spontaneous localization events) is proposed using the concept
of countably infinite families of discrete quantum states
(CIFDQS) as a choice function using the Zermelo-Fraenkel
choice axiom; also a simulation of the mathematical model is
developed in QISKIT.

Keywords- mathematical modeling, formal collapse, axiom of
choice, SLE GRW, CIFDQS.

Annomayus-B 1aHHON cTaThbe NMpeAIaraercs aKCMOMAaTH3ALMSs
(popmanbHoii Moaean kosLianca GRW (Ghirardi-Rimini-Weber)
SLE  (cmOHTaHHBIX  JIOKAJIM3AIMOHHBLIX  COOBITHII) ¢
HUCIOJIB30BAHHEM KOHUECNIHUHU CUECTHBIX 0eCKOHEYHBIX CeMeiicTB
JUCKpeTHBIX KBaHTOBBIX cocrosinuii (CIFDQS) B kauecTBe
('l)yHKllI/[Pl BbIﬁOpa ¢ HCHOJIb30BaAaHHUEM AKCHOMBI Bblﬁopa

Lepmeno-®penkesisi;  Tak:ke  pa3padoTaHa  CHMYJISIIHS
matematuuyeckoii moxesn B QISKIT..
Jlouesvie Cnosa- MaTeMaTH4ecKoe Mo/eIMpOBaHMe,

(opmanbublii KoJIaNC, akcuoMa Beidopa, SLE GRW, CIFDQS.
Mathematical Subject Classification: 81Pxx, 03E25, 81-10, 81S25.

I. INTRODUCCION

La banda de rock progresivo Rush en su tema
“Freewill" del disco Permanent Waves de 1980 menciona:
“You can choose not to decide, but still you have made a
choice.” indicando que un principio inmutable de la
existencia es la eleccion independientemente de que no se
Ileve a cabo la misma, por lo que es inevitable hacer una
eleccion entre infinitas posibilidades numerables. Lo
anterior coincide con el padre del existencialismo Sgren
Aabye Kierkegaard en su obra Either/Or en donde indica
que: “Choose! That is the essence of existence.”; por lo que
la existencia genera la regla de seleccidn y esta termina en
un estado del universo cuantico formal (medible)
denominado “colapso” -a diferencia de la sociologia, en la
que es una idea no medible-, que coincide con las
discusiones de Niels Bohr con Wheeler donde indica el

primero que: “No phenomenon is a phenomenon until it is
an observed phenomenon” [1].

Para la RAE la eleccion es una seleccion o preferencia
entre varias opciones [2] y como se ha mencionado es un
proceso propio de la existencia, fisica cuéntica y del
pensamiento abstracto de las matemaéticas que ha sido
abordado por diversos filosofos como parte de la
naturaleza.

El presente articulo propone adapta y moderniza el AC
o0 Axiom of Choice (Axioma de Eleccion) [3] [4] [5] de E.
Zermelo y A. Fraenkel (ZFC) para una familia infinita
(pero numerable) de estados cuénticos discretos elegibles
sobre modelos fisicos de colapso cuantico objetivo del tipo
GRW (Ghirardi-Rimini-Weber) [6].

El trabajo aborda el concepto de “colapso cuéntico
objetivo GRW” [6] como un postulado de eleccién fisico
en donde se realiza una transicién de un conjunto (finito o
infinito de estados cuanticos) a un Gnico estado.

La premisa matematica de trabajo es abordar colapso
cuantico objetivo [6] como una funcion de eleccién sobre
una familia infinita de estados cuanticos discretos que
exista bajo el principio del axioma de eleccion (AC) [3] [4]
[5] que selecciona un elemento de cada conjunto A # @.

El modelo permite describir los cambios de estados
estocasticos y las localizaciones espontaneas cuanticas se
observan como una operacion de eleccion sobre el AC en
donde mediante la superposicidn de una familia infinita de
estados discretos posibles, uno es elegido y se convierte en
la realidad del observador.

Asi mismo el trabajo intenta aplicar y demostrar (al
menos en una escala computable pequefia) mediante una
simulacion del modelo como una funcion de eleccion en
una familia de estados discretos que transita estados hacia
un “colapso” basado en la teoria GRW [6], con lo que se
obtiene una lectura en un contexto virtual.

Con lo anterior el trabajo permite conectar las
elecciones con el colapso estocastico que puedan generar
nuevos modelos de colapso cuantico, o ser abordado desde
las teorias de informacion cuantica para el determinismo
de LLMs o Large Language Models (Grandes Modelos de
Lenguaje) para chatbots.
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Il. AXIOMA DE ELECCION (CA).

El Axioma de Eleccién (AC) surge en 1904 con el trabajo
original de E. Zermelo en Mathematische Annalen, Vol. 59, en
la pagina 516 en donde indica que: “Beweis, dal’ jede Menge
wohlgeordnet werden kann. (Aus einem an Herrn Hilbert
gerichteten Briefe)” [3], el cual es una carta para Hilbert
denominada “Demostracion de que todo conjunto puede ser
bien ordenado” en donde proponia una solucién al trabajo de
1895 en teoria de conjuntos de Cantor “Beitrdge zur
Begriindung der transfiniten Mengenlehre. I” (Contribuciones
a la fundamentacion de la teoria de conjuntos transfinitos 17)
[7]1y el trabajo de 1902 de Hilbert “Mathematical Problems”
(Problemas Matemaéticos) [8].

Respetando la terminologia original de Zermelo [3] en su
primer trabajo del AC de 1904, no se describe un “axioma de
eleccion” como notacidn; si no como un intento de demostrar
que con base en el principio de que los “recubrimientos”
(conjuntos de subconjuntos o “familias de subconjuntos™) que
existen para la “totalidad infinita de conjuntos” (conjuntos
finitos o infinitos), siempre hay “mapeos” (mapeo, funcién,
morfismo, aplicacion, u operador funcional son sindnimos
segun el contexto [9]) que permiten elegir para cada conjunto,
uno de sus elementos de acuerdo a las definiciones 1y 3 de
Zermelo [3]:

1) Sea M un conjunto arbitrario de cardinalidad m,
y sea m un elemento arbitrario de este.
Sea M’ de cardinalidad m” un subconjunto de M que
contiene al menos un elemento que contiene al menos
un elemento m, pudiendo contener todos los elementos de
M.
Sea M — M’ un subconjunto “complementario” [3] de M’
; dos subconjuntos seran distintos si uno de ellos contiene
algin elemento que no aparece en el otro y sea M el
conjunto de todos los subconjuntos M".

3) Un conjunto Y es cualquier conjunto M, “bien
ordenado” [3] que consiste enteramente de elementos de
M con la propiedad de que siempre que a € M, sea un
elemento arbitrario; A serd el segmento “asociado”
formado por los elementos x € M donde: x < a;a #
M— A.

Junto a la siguiente propiedad:
Sea un conjunto Y que pertenecié en un momento t; aM —
Ly que en:

Hto(m) E M E Y d Etl(mll) E M - Ly.
Donde también existe el conjunto ordenado:

(Ly,m)) IV(y€EY)<m’y de acuerdo a Ila
definicion 3 de Zermelo sera un conjunto Y; por lo tanto
m’ € Y; contrario a lo que se supone y L, = M; siendo M
un conjunto con “buen orden” [3].

En consecuencia a cada “recubrimiento” le
correspondera un “buen orden” [3] definido por el
conjunto M; aln si el “buen orden” [3] de dos
“recubrimientos™ distintos no siempre son distintos. En
cualquier caso, debe existir al menos un “buen orden” [3]
de este tipo y todo conjunto para el cual la totalidad de

subconjuntos, etc., sea significativa puede considerarse con
“buen orden” [3] y su cardinalidad como un (numero) “aleph”
[3] (una secuencia de nimeros que representan la cardinalidad
o0 tamafio de conjuntos infinitos); deduciendo que, para cada
cardinalidad transfinita se cumple:

m= 2m = Nym = m?

Y asi sucesivamente; por lo que dos conjuntos cualesquiera
son “comparables”; es decir, uno de ellos siempre puede ser
“mapeado” (funcion [9]) uno a uno sobre el otro o sobre una
de sus partes; intentando probar que:

“Der vorliegende Beweis beruht auf der Voraussetzung,
daR Belegungen y iiberhaupt existieren, also auf dem Prinzip,
daB es auch fir eine unendliche Gesamtheit von Mengen
immer Zuordnungen gibt, bei denen jeder Menge eines ihrer
Elemente...” [3]; es decir: “La presente prueba se basa en el
supuesto de que las asignaciones existen; es decir, en el
principio de que incluso para un conjunto infinito de
conjuntos siempre hay asignaciones en las que a cada
conjunto se le asigna uno de sus elementos...”[3].

Posteriormente en su trabajo de 1908 dentro del
Mathematische Annalen, Vol. 65, en la pagina 266 Zermelo lo
estructura como axioma indicando que: “Axiom VI. Ist T eine
Menge, deren samtliche Elemente von 0 ver-schiedene
Mengen und untereinander elementenfremd sind, so enthélt
ihre Vereinigung ST mindestens eine Untermenge S, welche
mit jedem Elemente von T ein nnd nur ein Element gemein
hat.

(Axiom der Auswahl.)

Man kann das Axiom auch so ausdriicken. daB man
sagt, es sei immer moglich, aus jedem Elemente M, N, R, -
von T ein einzelnes Element m, n, r-, -~ auszuwalden und alle
diese Elemente zu einer Menge S; zu vereinigen.*)” [4];
es decir:

El axioma VI (de eleccién) o AC indica que si existe un
conjunto T cuyos elementos son todos conjuntos distintos de
0 y mutuamente disjuntos; su union &T (U T) incluira al
menos un subconjunto S; que contenga un solo elemento en
comun con cada elemento de T'; asi mismo el axioma se puede
expresar como que siempre es posible elegir un solo elemento
de cada elemento: M,N,R,..€ T y combinar todos los
elementos elegidos: m,n, r, .., en un conjunto S; .

Ademas indica que para asegurar la existencia de los
conjuntos infinitos, los axiomas anteriores requieren del
denominado axioma VII que es el Axioma de la infinidad
(Axiom des Unendlichen) esencialmente de Dedekind de 1888
[10].

Zermelo explica la prueba que realiza ese mismo afio
(1908) en el mismo numero de Mathematische Annalen, vol.
65, apenas unas paginas antes (pp. 107-128) en su trabajo
titulado “Neuer Beweis fir die Maoglichkeit einer
Wohlordnung” [11] en donde indica que: “no puede probar el
axioma ni que lo acepten apodicticamente”; sin embargo
indica que “La imposibilidad de demostrar... no implica la no
validez...; ya que a toda prueba le debe presuponer principios
no demostrados” comparando que Peano usa principios que no
han sido demostrados; asi como que el AC ha sido utilizado
con anterioridad por otros como Dedekind, Cantor, Konig,
Schoenflies y otros.

Asi mismo Zermelo enumera los teoremas que requieren
al AC partiendo de la equivalencia entre conjuntos disjuntos
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mediante los siguientes teoremas en donde se utilizara la
notacion moderna de acuerdo a productos cartesianos
infinitos, funciones y conjuntos de acuerdo a Bourbaki [12],
de modo que cuadre con el trabajo moderno:

Teorema 1 (descomposicién) [11]: Si un conjunto M puede
descomponerse en partes disjuntas 4, B,C, ...; entonces se
puede determinar una correspondencia de tipo biyectiva a
modo: M — conjunto de indices y de estas partes se requiere
elegir exactamente un elemento de cada una de ellas. La
existencia de la “funcién de seleccion”, f, que no puede
demostrarse sin la existencia previa del AC 0.

Teorema 2 (producto) [11]: Para una familia de conjuntos no
vacios el producto cartesiano con una f. en donde para cada
indice i, se elija un Gnico elemento a; de cada conjunto A; de
modo:

[lic;Ai # 0 o 3fc:]l > Ui Ay IVIEL f(D) €A
Que es una versién moderna del AC original o.

Teorema 3 [11]: Todo conjunto puede ser bien ordenado
(Teorema del buen orden)[3] [4] [12] que depende de la
existencia d previa del ACo.

Teorema 4 [11]: Dados dos conjuntos A y B; tienen una
cardinalidad: |A| < |B| vV |B| < |A| ; por lo que el
principio de comparabilidad cardinal requiere la existencia
previa de ACo.

Teorema 5 [11]: Dado un cuerpo K; un K —
espacio vectorial V tiene una base de Hamel [13] H
linealmente independiente y con un subespacio H con
elementos h € H, escalares Ah € K, el conjunto finito {h €
H;Ah # 0} < oo yv EV | v = Ypeyin - h de modo que:

H es linealmente independiente
VW2 He
VveV - A[(4,-h) CcK ]
La existencia de dichas bases H requiere la existencia previa
de AC, al implicar la selecciobn de representantes
para cada clase de equivalencia de la relacion lineal 0.

Teorema 6 [11]:

Dada una funcion suprayectiva f: [A — B] y su inversa f~1:
1) {aeA: F(a) = b} » f~1({b} # 0) | VbeB; su
inversa por la derecha g(b) sera: g(b) € f~1({b}) | VbeB
en donde se elige un Gnico elemento de cada uno g(b):
g:B > Al g(b)ef ~1({b}); con los elementos anteriores se
generaliza que:

[Vf:A-> B]—>3g:B - Al f(g(b)) = b; VbeB

Por lo que para que toda funcién suprayectiva con admision de
funcién inversa por la derecha elija para cada elemento del
codominio un elemento correspondiente del dominio, requiere
de la existencia de AC O .

Teorema 7 [11]: Existen soluciones discontinuas de la
ecuacion funcional aditiva:

f(x +y) = f(x) + f(y); Hamel [13] demostré la
existencia de tales soluciones asumiendo que el continuo
puede ser bien ordenado requiriendo la existencia de AC. Esta
construccion requiere el Axioma de Elecciéno.

La existencia de estas soluciones requiere una base de
Hamel H [13] de R como espacio vectorial IV sobre Q cuya
construccion requiere la existencia del AC.

Su trabajo termina coincidiendo con Poincaré justificando
la necesidad de existencias del AC.

Fraenkel 1922 aborda la independencia del AC [5] del resto
de los axiomas propuestos por Zermelo [4] [11] que lo usa
como requisito existencial para la demostracion del “buen
orden” y es gracias a su aportacion que AC es conocido como
Zermelo-Fraenkel (ZFC) [5].

Definicion 1.

Frege define los urelementos [14] y Fraenkel los usa en su
trabajo [5] para demostrar la independencia del AC como
objetos del dominio que no tiene elementos y dichos objetos
no son conjuntos; sin embargo pueden formar parte de
conjuntos .

Definicién 2.
Fraenkel define celda [5] como un par no-ordenado de
urelementos de la forma {a,, b, } donde:

{an, by} | Veelda > (4) = {{as, b1}, {a by}, .} | A
— denumerablen.

Definicion 3.

Fraenkel implicitamente describe un “sistema generado”
como el menor universo U mediante sus objetos iniciales [5]:
@, Z0 = {0, {0}, {{0}}, } y el conjunto de celdas A; asi
mismo para todos los conjuntos derivados de la funcion finita
es aplicable cualquiera de los axiomas I1-V de Zermelo [11]
dentro del universo Ude Fraenkel [5] o.

Definicion 4.

La simetria es el proceso de permutacion entre los dos
urelementos de una celda; el proceso puede dejar invariante a
algunos subconjuntos; por lo que no puede existir una funcion
de eleccion sobre el conjunto de celdas, ya que cualquier
eleccion seria destruida por tal permutacion de acuerdo a
Fraenkel [5] c.

Con base en el trabajo previamente comentado de Zermelo
y las definiciones anteriores modernizadas en lenguaje por
Fraenkel se propone la siguiente descripcién moderna para el
axioma de eleccién Zermelo-Fraenkel (AC o ZFC) agregando
nuevas definiciones.

Definicién 5

De acuerdo a la definicion 1 de urelementos se considera
una familia de celdas descrita en la definicién 2 de tipo A
(definicion 3) que trabajard sobre una familia numerable de
conjuntos no vacios {Cn} = {a,, b} IV EN; {Cn} #0y
que de acuerdo a la definicién 1 el par {a, b,}—
urelementos distitnos; a, # b,0O.

Con base en la definicion 5 respecto a {Cn} y sus
urelementos a,, # b,,; una familia A del tipo de la definicion 2
sera:
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A ={Cn:n € N} (1)

Definicion 6.

Sea | un conjunto indice y utilizando la definicion 5 de
{Cn}; una celda y usando (1) para una familia de conjuntos
A = (4);e; la funcién de eleccion f. (choice function) se
define como el universo:

fel > Ui A | VieLf() €A, (2)
Asi mismo:

fi:A> UA|f(Cn) € Cn={a, b,},Yn €N (3)

La funcién de eleccidn (2) basada en Fraenkel [5] puede
ser modernizada como un producto cartesiano:

fe €llies 4i (4)

O

Proposicion 1.

Una  funcién de eleccion f. (2),(4) cumple las
caracteristicas de funcion moderna al contar con: dominio I,
codominio U;¢ 4;, imagen f.[I] € U, 4; vy la regla de
correspondencia no ambigua i = f,(i) | f.(i) € A4;.

Asi mismo satisface las condiciones de unicidad funcional:
(i, x)ef.A(i,y) € f, > x=y; en donde f,.(i) es el Unico
elemento de A; emparejado con i O.

Demostracion.

Utilizando (4) a modo producto cartesiano donde la
funcion es un subconjunto: f. € I x U, 4;; implica como
reglaque: f.: 1 - U, 4; C.

La condicién funcional exige la unicidad que de acuerdo a
Bourbaki [12] debe cumplir que: ((Vi € I),f(i)) € IA;; es
decir un unico para (i, f (i) € f); es decir como se postuld en
la proposicion 1: (i,x) € f A(i,y) € f - x =y, con lo cual
la funcion de eleccidn f, (2) (4) cumple con la definicion de
relacion univoca.

Con respecto al dominio I, dada la funcién f:1 - U, 4;;
no puede existir un indice sin valor, ni valores fuera de I.

Por otro lado el codominio se encuentra implicita en un
producto cartesiano como el expresado en (2) (3).

La imagen implica que: f,(i) € A; € U;; 4; = im(f,) =
fell] € Uier A;.

La regla de correspondencia no ambigua i+ f.(i) |
f.(i) € A; contiene el conjunto de pares ordenados: f, =
{(i, f.(0)} | i € I que de acuerdo a lo anterior es una funcion
y no una relacion m.

Demostracién 2 (por reduccion al absurdo).

No puede existir una funcién de eleccion de un objeto
elegible y que por el contrario se trata de una relacion pero que
sea simultdneamente de acuerdo a (4) un elemento del
producto cartesiano; expresado en terminologia de Bourbaki
[12] HiEIAi = {fl 4 UiEIAi} | Vi € I,f(l) € AL! es decir
cada elemento del producto es una funcién y no una relacién.

Contradiciendo lo anterior sea W € [[;; 4; un objeto
elegible en (4,);¢; tal que no es funcién; si no mas bien una
relacion, lo cual implica al menos un indice con dos imagenes

distintas, se deduce que: iy € I,Ix =y — [(ig,x) EW A
(ip,y) € W]; sustituyendo f, por W en (4): W €[l 4;
implicara que se puede sustituiren (2): W:I — U;g; A; | Vi €
I; W (i) € A;, que implica la existencia de un Unico elemento
xparacadai €l - 3x | (i,x) e W.

~Viel->Ax | (,x) EW; iy, €l - Ax | (ig,x) EW.
Dada la hipétesis de que no podia ser funcion f, se tienen dos
resultados distintos; lo que contradice la unicidad m

Escolio.

Por lo anterior demostrado en dos formas distintas se
concluye que cualquier funcion de eleccion f. y por
consecuencia el axioma de elecciéon que hace uso de ella
cumple las caracteristicas modernas de funcion.

Definicién 7

Con base en la definicion 5 y 6 se puede generalizar que
todo conjunto con indice I de una familia A de conjuntos
indexadas por la misma I; se puede formar una funcién A: I
que asigna cada indice un conjunto o

Definicién 8

Utilizando las definiciones 5,6 y 7, (1) y (3) el Axioma de
eleccion AC de Fraenkel [5] estructuradamente puede ser
expresada como:

VI € conjunto V(A)ie: 1 = [((Vi€I),(4; # 0)] =
[3f:1 > Ui Al I Vi€ L f() € A ®)

La ecuacion (5) basada en Fraenkel [5] puede ser
modernizada como un producto cartesiano que indique una
funcion de eleccion (2) sobre una familia:

VI € V(A e = [[(Vi €D, (4; # 0)] = [Tie; A; # 0] |
[lictAi:={f:1 > Ui A}, f(D) EALVIE] (6)
o.

Cabe mencionar que Fraenkel no utiliza en su trabajo [5]
el AC con cuantificadores sobre familias en (3) 0 (4;);¢; (5);
mucho menos con notacion de producto como en (4) o [1;¢; 4;
(6), el cual esta basado en Bourbaki [12]. Fraenkel [6] acepta
el axioma VI de Zermelo [5] [11] respecto a la familia de
conjuntos no vacios disjuntos donde un conjunto contiene
exactamente un elemento de cada uno y genera las
definiciones 1- 4. De igual forma Fraenkel [5] no hace una
demostracion de la funcion de eleccion en términos de funcion
modernos.

Con lo anterior se ha modernizado en dos versiones el ZFC
0 AC.

La ecuacion 3 también indica que una funcidn de eleccién
f(Cn) de acuerdo a Fraenkel [5] en el dominio A
independiente del “buen orden” sobre los elementos de cada
celda. Entonces:

if(Cn) =a, Vb, INEN @)

La funcién de eleccién f(Cn) es una instancia misma del
AC que permite la existencia del mismo axioma de eleccion al
ser {Cn} una familia numerable de conjuntos nos vacios
indicado en la definicién 5, por lo que con base a la definicion
2 y ecuacion 1 una familia infinita numerable -pares de
calcetines de Rusell- [5] es:
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HA = {{allbl}' {aZ'bZ}' } (8)
De acuerdo a Fraenkel [5] serian indistinguibles entre si, al
no establecer un criterio externo a menos que se asuma la
existencia del AC que cumpla con (2) y (3).

Axioma 1

Utilizando la definicién 3, el sistema generado puede ser
descrito ahora un universo generado modernizando el trabajo
de Fraenkel [5].

Sea U el menor conjunto cerrado que cumple los
axiomas de Zermelo del “buen orden” [11] II-V
(({@},separacion, pares, unioén), asi como la definicién del
conjunto potencia que contiene a: @ € U, Z, € U (como un
centro que contiene a {0,{0},{{0}},...} ) y una familia de
celdas A; como la descrita en la definicion 5 y en (1) donde
A={Cn:ne N} eU.

El sistema del AC bajo la descripcidn de Fraenkel [5] tiene
simetrias en las celdas que es implicitamente un moderno
“automorfismo de estructuras sobre un objeto algebraico” de
acuerdo al trabajo de Galois de 1832 [15] donde describe que
la simetria es una permutacion del conjunto raices respetando
la estructura algebraica generando grupos de automorfismos
sobre un conjunto base y que posteriormente formaliz6 Klein
en 1872 [16] en donde utiliza el concepto anterior de
automorfismo del universo U, ademas de las permutaciones de
objetos (como lo elegibles) que preservan una estructura del
universo generado U y que da clasificacion a una geometria
con base a sus transformaciones [16] (permutaciones) sobre
objetos definibles llamados invariantes sobre los grupos de
transformacionesuo.

Definicion 9

Modernizando la definicién 4 (simetrias) de Fraenkel [5]
vn € N serd una permutacion elemental en U de los
urelementos: o, (a,) = b, ,0,(by) = a, | Vx = g,(x) = x
extendiéndose de forma inductiva a cada conjunto del
universo U de forma: o, (x) = {0,,(x): x € X}0O.

Definicion 10
Sea G el grupo generado por todo o, que acttaen U:
G=(o)IneEN;g-X=g9gX) 0.

Definicion 11

Un conjunto X € U tiene invariancia bajo simetrias sobre
una permutacion sobre los urelementos de la definicién 9 o,
si 0,(X) = X e invariante sobre la definicion 10 de G si
gX)=X|vg-gein.

Definicion 12

Sea F un conjunto finito. Un conjunto X € U tiene baja
invariancia en simetrias si 3F c N | o,(X) =X | Vn € F;
por lo que un reducido nimero de celdas podrian ser
invariantes, para el resto X no encuentra diferencia a, v b,0O.

Axioma 2

Fraenkel [5] indica que el trabajo de Zermelo [11] tiene
“propiedad definida” cuando describe que un conjunto
definido es construible mediante un ndmero finito de
parametros y aplicaciones (funciones) finitas de los axiomas.

De acuerdo a las definiciones anteriores que se han venido
describiendo, se puede modernizar lo anterior mediante una
estructura para la simetria de conjuntos definibles en donde

todo conjunto definible sobre U (axioma 1) para un nimero
finito de pardmetros bajo las definiciones 10 y 12 tendra una
baja invariancia con los elementos de la definicion 9 bajo G de
la definicion 10; por lo que X € U — 3F < Nfinito | Vn ¢
F,0,(X) = X.

Un comentario interesante respecto al trabajo de Fraenkel
[5] es que si bien , logra generar un modelo matematico
basado en los conceptos que hemos modernizado en esta
seccion de: urelementos, celdas, sistema generado y simetrias,
en donde no existe una funcién de eleccion para una familia
numerable de pares indistinguibles, se ha logrado actualizar
mediante las definiciones y axiomas propuestos. Asi mismo,
coincidiendo con Fraenkel [5] el AC modernizado logra ser
independiente del resto de axiomas de Zermelo [11] desde el
concepto de propiedad definidano.

I1l. CIFDQS (COUNTABLE INFINITE FAMILY OF DISCRETE
QUANTUM STATES)
Definicion 13
Utilizando la estructura moderna de Halmos [17] de
acuerdo a Neumann en su trabajo Mathematische Grundlagen
der Quantenmechanik de 1932 [18] un espacio vectorial
complejo de Hilbert H existe si cuenta con una aplicacion
(funci6n) denominada producto interno Hermitiano [17]
descrito por (x,y) = (x,y) de Charles Hermite “Sur quelques
applications des fonctions elliptiques” [19] de 1856 en donde
describe sus propiedades como el conjugado complejo en pares
ordenados, simetria conjugada , positividad sobre C y la nocién
implicita de sesquilinealidad, mismas con las que cuenta .

(LIHXxH->C 9)

(9) satisface la sesquilinealidad [17] lineal.
Para la primera entrada:

vi,d, X € H,(Va,B) € C I

(ap + B, X) = a(, X) + (¢, X)  (10)

Y para la segunda entrada su conjugado-lineal [17]:

W, a9 + pX) = &P, ¢) + f, X) (1)
(9) satisface la Hermiticidad [17] mediante:
W, ¢)=(¢,9) (12)
(9) Cumple con la positividad [17] debido a que:
W) 20; Py =0 =0 (13)
Asi mismo (9) tiene completitud al ser:
Il =G, ) (14)

Las ecuaciones (10)-(14) describen que F'(9) de acuerdo a
Halmos como un espacio vectorial normado completo con
producto interno Hermitico y completo con respecto a su
norma inducida [17] o lo que es conocido como la
convergencia de sucesiones de Cauchy en H [17] o.

Por otro lado Neumann indica que el estado fisico de un
sistema cuéntico se representa por un vector denominado
“rayo” en un espacio de Hilbert complejo [18]; por lo que para
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el desarrollo cuantico del trabajo solo se usara el espacio de
Hilbert en C y no solamente R [20].

Definicion 14
Un estado cudantico puro es un vector i donde:

YeH |yll=1 (15)

En mecénica cuéntica dos vectores (i, ¢ € H) que difieren
por un factor complejo de mdédulo 1 representan el mismo
estado fisico si [20]:

p=¢e%P |HER (16)

De acuerdo a Neumann [18] el estado fisico real se

denomina rayo cuantico v de acuerdo a Moretti [20]:

W] ={peH} | ¢p=e¥pa0eR

]

(17)

Definicion 15
Una familia contable (enumerable) al similar a la que se
propuso en la seccién anterior en la definicién 5 para (4;);e;
admite cualquier elemento como posibles estados cuanticos
discretos [18] y de acuerdo a la definiciéon 10 y 11 se puede
describir una sucesion normalizada de vectores en un espacio
J¢. similar a las familias indexadas en la definicién 7 donde I =
N. mediante la siguiente ecuacion:
Wndnen E=H | [Pl =1 (18)

O

Definicién 16

Debido a que el trabajo tiende a la discretizacion se requiere
que (16) brinde datos medibles; es decir que la familia (18) sea
ortonormal [21] si cumple con;

(l/)n' lpm) = (19)

6nm

Las estructuras de familias ortonormales [21] como (19)
permiten obtener un par de resultados medibles con
aplicaciones [22] en medidas concretas como el colapso formal
como (18) en donde cada () ey €S UN estado puro , [¢] un
rayo y el conjunto {[(¥,)renl} Sera un sistema de estados
posibles de un sistema desde una estructura discreta; esto es
una familia numerable (4;);¢; de la definicion 5, por lo que
una familia ortonormal que cumpla con (19) sera la estructura
a trabajar para desarrollo del modelo matematicoo.

Definicién 17

De acuerdo a la definicion 13 y Conway [23] una base
ortonormal o Ortho-Normal Basis (ONB) sobre un espacio H
(9) que cumpla con (19) es un conjunto con indice contable
(enumerable) I= N [24] en un subespacio vectorial o capsula
lineal denominado Span [25] {e,} In€l S H.

ortonormalidad: (e,,e,) = 6,
{en} o {completitud: Spanf{e, In€l} =K (20)

En espacios de Hilbert una ONB es también conocida como
un sistema ortonormal completo o CONS (Complete
Orthonormal System) [17].

O

Definicion 18

Un operador cuantico T: H — H es una funcioén lineal que
opera en H y transforma el estado; cabe mencionar que esto
puede no necesariamente ser fisico 0 medible y es descrito bajo
la condicién de T(ay + B¢) = aTy + BT ¢ [26].

Un operador cuantico asociado (a un observable) A es un
operador cuantico autoadjunto que representa una
observacion fisica de magnitud como la posicién cuéntica,
momento o spin de forma que (Ay, ¢) = (Y, Ap) [26].

Un operador cuéntico autoadjunto asociado (a un
observable) AT permite que los valores en la medicion fisica
denominados espectro sean valores en R mediante la
igualacion del operador cuantico asociado a un observable A
al operador cuantico autoadjunto; A = AT [26]. AT es de tipo
discreto cuando es numerable (contable), no tiene parte
continua y cada A, cuenta con un valor y un espacio individual
de la forma: ATy, = A,,,. Fisicamente en los aparatos de
medicion los Afcon espectro discreto permiten obtener
magnitudes R seleccionando solo los ortonormales; como
sucede con el nimero de particulas, el spin S, o los estados
cuanticos discretos de un atomo [26] o.

Un operador cuantico compacto K transforma conjuntos
que operan en A a conjuntos compactos R que contienen un
espectro de medicion de estados {¥,,1, Yn2, ¥n3, ... } discreto;
lo cual para el modelo permite que el espectro sea
matematicamente contable (numerable); sin embargo esto no
representa una observacion fisica, ni implica que siempre sea
autoadjunto [26], por lo que para la literatura en fisica cudntica
no es utilizado.

Definicién 19
Dado un operador cuantico que mapea (funcién) a un
espacio de Hilbert complejo A:H; se define AT como el
autoadjunto A = AT que mapea a H [26] de la forma:
At H > H (21)

O

Definicion 20

De acuerdo a la definicion 17, el espectro discreto contable
del modelo sera: a(A") = {1, 1,, 3, ...} que es el conjunto de
resultados de la medicion del autoadjunto AT ONB donde:

AT, = 4,3, © [, » ortonormal] (22)

Asi mismo existe una independencia fisica entre los estados
cuénticos que aplica para Vn # Vm 0.

Definicién 21
Utilizando (21); sea H un espacio de Hilbert complejo, N
un conjunto contable N = {n;, n,, ns, ... } con indexacion [24]
para estados de eleccion cuanticos posibles ,, de una familia
Y denotada por la funcion de eleccion (4) (7):
Y:N - H (23)
O

Definicion 22

Con base en las definiciones 15-21 surge el concepto de
“familias infinitas contables de estados cuanticos discretos” o
CIFDQS (Countable Infinite Family of Discrete Quantum

© Autor(es) 2025. Articulo de acceso abierto bajo licencia CC BY-NC-ND @ @ © ®

27



Journal de Objetos y Objetivos Matematicos No. 13; julio-diciembre 2025.

ISSN 2683-264X. https://joom.org.mx

States) como una familia que tiene una norma del espacio H
[[W(m)|| =1 que contiene vectores W(n) (rayos cuanticos)
que representan los estados discretos cuanticos posibles
elegibles por el axioma de eleccion (6) y la funcion W de
vectores n con imagen i, que representan una medicion
mediante un operador cuantico autoadjunto asociado a un
observable A = A' discreto en donde la familia es un conjunto
de elementos contables de acuerdo a (21) que cumple con:

[A=AT:H - ¥:N > H] |

Normalizada: [|[¥(n)|| = 1
Discreta:YAYW(n) | ¢, » ONB
Indexada: (Wp)nen | Wy = ¥(n).Def 7
Independencia: Vn #= Vm —= [Y,] # [Y¥m]
(wn)nel\l CH
A=At > ATy, = 1,9, #0

vneN (24)

La ecuacion (23) es un CIFDQS normalizada vy
discretizada utilizando rayos [18] que une (al ser aplicable) el
axioma-funcién de eleccion de [5].con la fisica cuantica en
espacios de Hilbert [8] al poder realizar mediciones discretas
de observaciones reales [26] para los contables infinitos
estados cuanticos posibles en donde
A=A > AtyY, = 1y, # 0.

IV. COLAPSO FORMAL COMO SELECCION SLE-GRW

Continuando con la definicion 13 seccion anterior se dice
que un sistema fisico trabaja como un vector [18] ,, € Hque
contiene los estados infinitos contables y las magnitudes
observables discretas posibles con sus respectivos espectros
ATlpn = € H.

De acuerdo a la fisica cuéntica un sistema no observado
puede encontrarse en superposicion de Heisenberg [27] de
infinitos estados cuanticos posibles y en el momento de
observacion para medirlo se genera un fendémeno denominado
“colapso de estado de la funcidn de onda” de Schrodinger [28];
es decir el cambio instantaneo (reduccién) hacia uno solo de
los estados denominado eigenestado v, [18] descrito como la
transicion [18]:

Y = Py (25)

Algunas teorias indican que el colapso [27][18] sucede por
las amplitudes de la superposicion [27]inicial; lo cual apunta a
un caracter no dinamico del proceso que ha generado distintas
interpretaciones y teorias para formalizar su comportamiento.

Una de los modelos de colapso fisico medible u objetivo
[18] mas aceptados es la “teoria dindmica unificada para
sistemas microscopicos y macroscépicos” o Unified dynamics
for microscopic and macroscopic systems (GRW) de G. C.
Ghirardi, A. Rimini y T. Weber de 1986 [29] que propone al
colapso no como una abstraccion matematica; sino como un
fenémeno fisico real medible estructurado por saltos
espontaneos del estado cuantico[30]. Asi mismo, trabajos
recientes como el modelo de Leckey y Flitney de 2025
proponen la medicion discreta del colapso espontaneo de una
funcioén de onda [31].

Definicién 23

El principio de superposicion [27] como se menciono
describe la  simultaneidad sistémica de  mdaltiples
configuraciones posibles expresada mediante la estructura

lineal del conjunto de estados {i,,} sobre un espacio H como
la ecuacion (21) se pueden utilizar coeficientes complejos.

Se define superposicién como la sumatoria del conjunto de
estados cuanticos validos de un vector rayo [18] para cada
coeficiente ¢, que representa la densidad de probabilidad o
amplitud de acuerdo a Born (1926) [32] [33] en donde el
cuadrado del médulo indica la probabilidad de que al observar
el sistema se encuentre en un estado donde el operador
cuantico At tenga el eigenestado 1, [18] descrito en ( 25)
siendo todos los estados fisicos con magnitud [33] de la forma:

Y = Zn Crthn | (wn'lp)' ancnlz =1|Vc, €C (26)

La ecuacidn (26) es coherente con el espectro discreto de
la definicion 22 de una familia CIFDOS en donde la familia
contable {y,} € N es una combinacion lineal de eigenestados
[18] normalizados que son ortogonales entre ellos mismos o.

Definicion 24

Utilizando la definicion 18 y 19 un operador cuantico
autoadjunto A = A [26] con espectro discreto e eigenestados
[18] normalizados como en (26), con la estructura ortonormal
de (22), que satisface a (22) y (19), el conjunto de estados
cuanticos infinitos contables {i,,} € N puede ser modelado
como la sumatoria que describe la combinacion lineal infinita
de eigenestados [18] en donde Vi € 7.

Se define como probabilidad de colapso a un estado ¥ a la
transicion (25) que contiene simultaneamente la informacion
de cada valor 2,, del operador AT mediante la probabilidad (26)
de que al observar un sistema; este se encuentre en un estado
[33] donde V¢, indica la densidad con la que i proyecta sobre
el estado y,,:

P(A) = lex|? (27)
]

Definicién 25

Utilizando a la definicion 15, 17 y la ecuacion (18) existe
una familia contable de eigenestados normalizada ONB (20)
que satisface a (19) y CIFDOS (24).

Un espectro discreto es toda magnitud fisica medible sobre
H como la ecuacion (21) con el operador AT donde V4, € R
€S un espectro que se comporta cOmo una superposicién
discreta que satisface a (26) de la forma:

o(A) ={y, I n €N} (28)

O

Definicion 26

Mientras la teoria y ecuacion de funcion de onda de
Schrédinger  [28] iﬁ%lp(t) = Hy(t) [18] es unitaria,
continua, determinista y reversible [18]; la teoria del colapso
estandar es discreta, no unitaria, probabilistica e irreversible
unificando (23) y (26) como:

Y= Zn CnPn = Yy | (1,071, ¢). Ve, €C (29)

El postulado afirma que al medir A* con espectro discreto;
se reduce (colapsa) a uno de los posibles eigenestados [18]
cuya probabilidad esta dada por (27) o

El estado del sistema se encuentra en funcién de la
interaccion de medir mediante un dispositivo macroscopico;
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por lo que lleva a al problema de frontera cuantico-clasica en
donde el colapso no es autonomo si no dependiente de la
intervencion, por lo que el axioma de eleccion [11]
complementa el modelo.

El colapso estandar indica que el sistema pierde
informacion durante el proceso al igual que sucede con en el
modelo de Schrddinger [28] pero con irreversibilidad; sin
embargo (27) el modelo de Born [33] no cuenta con un sistema
de seleccion estocastica o que describa la transicién de estado
por lo que han aparecido teorias que lo explican como el
colapso objetivo [30], historias consistentes [34], decoherencia
ambiental [35], estado relativo [36], colapso gravitacional [37]
y otras teorias subyacentes [38] para tratar de explicar el
colapso de los conjuntos de ondas [39].

Definicion 27

Como se ha descrito en mecanica cuantica el colapso
estandar formal [18] depende del acto de medir. Por otro lado
el modelo GRW [29] propone una estructura matematica que
describe una funcién de onda que presenta eventos de
localizacion espontadneos o spontaneous localization events
(SLE) [29] los cuales suceden aleatoriamente durante el
tiempo, afectando su localizacién y cuya caracteristica
principal es su independencia de parametros universales del
observador y parametro de localizacion L, que se encuentra en
una posicién aleatoria x; lo anterior coloca al modelo como
dinamico, continuo y unitario.

El comportamiento SLE [29] del sistema respecto al tiempo
establece que se comporte de acuerdo a la ecuacién de
Schrédinger mediante una dindmica no continua, estocastica y
con colapsos espontaneos de acuerdo a la ecuacion:

Ly
Y=

(30)

El modelo propone que la frecuencia de salto lleva a un
proceso de conmutacién como sucede en los sistemas de
comunicacion, pero relativo al tamafio; comportandose en baja
frecuencia en niveles microscopicos individuales y alta
frecuencia en los niveles macroscopicos. Lo anterior permite
que no se genere el problema de frontera cuantico clasico del
colapso estandar o.

Debido a que el modelo GRW [29] trabaja mediante
colapsos espontaneos; su seleccion estocastica de estados
puede ser interpretada como una CIFDQS al tratarse de un
conjunto discreto de un colapso real (estados fisicamente
posibles) mediante un modelo probabilistico (27) en donde a
cada evento de colapso SLE le corresponde un indice de la
formak € N

Definicion 28

De acuerdo a la definicion 27 con el modelo de transicion
de la ecuacién (29) y debido a la aleatoriedad de un SLE [29],
el modelo GRW [29] puede describirse como la siguiente
distribucion de probabilidad con k € N:

Y - Pi | k~Pgrwy (31)

Teorema 8
La ecuacion (31) puede ser reescrita de acuerdo a un indice
k elegido de acuerdo a una distribucién de probabilidad que
depende del mecanismo de SLE [29] propio del modelo
estocastico mediante la funcion de colapso SLE Fggyy:
Forw:i» P Y I¥Y={Y},neNP:N->H (32)
La ecuacion (32) es una funcidn no unitaria y discontinua
gue cumple con dominio dada una familia de estados discretos
asociados a un operador A" o descomposicion relevante, con
codominio de la familia de estados discretos bajo la regla de

eleccion de elementos de la familia GRW [29] de la
distribucion o.

Demostracion

Dado un espacio discreto descrito por las ecuaciones
similares a (21) descrito por A = A" : I - 3¢, (28) 0(4) =
{A4.} | n € N, una familia contable de eigenestados ¥ similar a
(18) donde ¥ = {Yn} lnenS H; Ay = A | IYpnll = 1.

Sea S un conjunto de estados normalizados que admiten
una descomposicion discreta en la base W y el colapso SLE
GRW [29] una funcion que depende de la eleccion aleatoria
bajo una k (31) sustituyendo S en (32) en donde existe:

Forw: = S = ¥ | Ferw () = i |
n€N,¥:N > H, k ~Pgry, k €N (33)

La funcién Fggy (33) es una funcién bien definida de
acuerdo a (33) en donde Vy € S le corresponde de acuerdo a
GRW [29] que utilizard un marcador de posicion “-” para
cualquier evento aleatorio condicionado al estado Pggy (¢l
1) € N en donde el colapso SLE [29] utiliza como eleccion el
indice k € N estableciendo como en (32) que Fgryy (W) = Yy;
por lo que de acuerdo a (33) la funcion (32) cuenta con
existencia y unicidad; es decir: Vi - 3k € S| Feryy (W) =
Y, y de acuerdo a la definicién 23 a cada colapso real SLE
[29] le corresponde por unicidad solamente unk .

Debido a que cuenta con las condiciones anteriormente
expresadas de existencia y unicidad del dominio S con su Unica
imagenen ¥ m.

Asi mismo (32) es no unitaria debido a que la condicion de
una funcidn unitaria deberia ser U: £ — 3 y (28) no cumple
ya que debe ser lineal y preservar el producto interno; es decir:
U, Uy) =(p, ) I V), €H.

Simplificando el problema se asume un conjunto binario de
estados A {Y,p} €S 1Y # @, Y =Xncpbn , @ =Xy Cnty;
en donde cuando transita a un colapso SLE [29] en donde
coinciden con el mismo indice k € N de (33) a ambos:
Ferw (W) = Y, » Forw (@) = Wi, | ky = kg = (Forw () A
Forw (@) = (Wi, Pi) = 1.

Pero como se describe el conjugado complejo [8] [17] en:
glp:‘P; =XnCrdn #1oY # @)~ Forw (@) , Forw (@) #

Y, p).

Lo anterior contradice el producto interno demostrando que
la funcion Fggy, €S no unitaria ni lineal m.

Por otro lado Fggy, €S No continua respecto a la norma de
H . Nuevamente simplificando el problema se asume un
conjunto binario que representa dos estados ortonormales
{¥1,¥,} € ¥ y la siguiente sucesion de estados restringida:
Y™ =@, + Bab, | n €N, {ay, B} € Cnormalizados.
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o 1
Dado que |, |2 + [B1> = 1 AP > ) = Ly +

1,) esta en norma.

Si la funcion (33) se comporta de acuerdo a SLE GRW [29],
entonces tendrd una distribucion  Pgg,, pudiendo elegir
binariamente el valor n que domina a i,,:

2n->k=1-1y, Y = 2n

n{2n+1—>k= 2>, = Forw (¥™) ={¢2 -2n+1

La sucesion {y™} converge en H; mientras que la
sucesion de imagenes {FGRW(zp(m))} no lo hace en norma al

oscilar en el intervalo ||y, — 1, || = 3/2 0.

Por lo tanto la funcién no es continua; al existir una
sucesion que converge, ademas de un limite que es distinto al
establecido por la funcién y la funcion Fggy,, es discontinua en
lanormade H'm

Por dltimo dado el dominio Dom(F;gy,) = S y un conjunto
de estados admisibles a ser discretizados de la familia de la
ecuacion (21) de modo: W:A = AT; su codominio serd
entonces el conjunto: Cod(Fgry) = ¥ = {Yy:k € N}; es
decir la familia discretizada de estados eigenestados generada
por el espectro discreto de A o la descomposicién modular de
la funcion m.

Como consecuencia la regla de correspondencia de la
funcién sera la ecuacion (31) que define la regla de eleccion
estocéstica de la familia discreta ¥ m.

Escolio

Fgrw (33) es una funcién no unitaria y discontinua de
colapso de acuerdo a SLE GRW [29] que toma como entrada
un estado discretizado ,, del conjunto de superposiciones de
una familia ¥ que de acuerdo a la distribucion SLE GRW [29]
a modo axioma de eleccion [11] [5] elige un elemento de la
familia ¥ que produce el colapso cuantico a un estado y, m.

Definicién 29

Sea F la coleccion [18] de todas las familias discretas
contables (18) de estados posibles bajo un operador A', una
funcién W(F) que describe a {1,,} vy al colapso Cery {Y} =
Yy.; la funcién que describe el colapso SLE GRW [29] de las
familias discretas numerables de estados normalizados al que
transitan puede ser modelado como:

Cerw = F = W(F) (34)

0.

V. MODELO MATEMATICO DEL COLAPSO FORMAL SLE-GRW
COMO UNA FUNCION MEDIANTE EL AXIOMA DE ELECCION PARA
CIFDQS.

En las secciones anteriores se han descrito los médulos que
conforman al modelo matematico.

El modelo parte de que la proposiciéon 1 que moderniza la
funcién de eleccién de Zermelo-Fraenkel ha sido demostrado
como una funcién y del teorema 8 en donde existe una funcion
de eleccion para un estado de colapso formal SLE GRW [29] es
una funcién demostrada.

A continuacion se desarrolla formalmente el modelo
matematico de una funcion de eleccion que utiliza el AE de
Zermelo-Fraenkel para explicar al colapso formal GRW [29]
en CIFDQS.

Teorema 9

Funcion de eleccion para el colapso formal GRW en
CIFDQS mediante el AE Zermelo-Fraenkel.

Dado un espacio de Hilbert complejo A: H estructurado
con un operador autoadjunto cuantico que acta como funcién
como en la definicion 19:

A=At :H >H (35

Donde su proceso de observacién de acuerdo a (35) genera
un operador autoadjunto ¥ que actGa como familia contable
posibles estados cuanticos que devuelve un espectro discreto
como un conjunto con indice k como en la definicién 15:

W={p}SHIkeN (36)

Sea una CIFDQS mediante la definicion 24 de eigenestados
normalizados asociados al operador autoadjunto At (35) con
[lYkll = 1 que de acuerdo al teorema 8 cuenta con un conjunto
de estados normalizados que admiten una descomposicién
discreta en la base W y un salto dado por la funcion de colapso
SLE GRW [29].

Sea S el conjunto que denota todos los estados en
superposicién (26) discreta de la familia ¥ (36) de tipo
CIFDQS:

S={p eH: P} = Qren i, Lelarl?y =1 (37)

De acuerdo a las definiciones 27-29 que describen el
modelo de evento de localizacién espontdnea de GRW [29]
asociado a un posible estado Y, € S; la distribucion de
probabilidad discreta (27) que describe un salto esta dada por:

p(:1¥) 1 N-[0,1]

Usando a (38) La probabilidad de colapsar GRW [29] en el
estado 1y, es asignada por cada indice k mediante:

(38)

Ykenp(k ) =1 (39)
Sea (Xy)xes Una familia indexada por S de subconjuntos de
¥ + 0 que indican los estados elegibles donde:
VPES-> Xy ={{}eP Ip(kly)>0}IXy, #0 (40)

De acuerdo al Axioma de Eleccion de Zermelo-Fraenkel
[31[41[5][11] y definicién 6 existe una funcién de eleccion.

Sea la funcién de eleccion Fjgy,, definida como:

Ferw:S = Uy Xy | VY €S, Fery () €Xy  (41)

La funcion de eleccion Fggy, (41) permite obtener bajo el
contexto del axioma de eleccion AC Zermelo-Fraenkel elegir
un unico estado Fggy, () para cada rayo vy [18] definido como
un salto cuéntico bajo el modelo GRW dentro de la familia
CIFDQS ¥ = {{; }xen denotado como una funcion global de
la forma:

Forw € [lypes Xy | Forw (@) € Xy, €W (42)
[
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Demostracion 1

(42) es una funcion bien definida.

Dado el indice k (18) de los estados de superposicion
discreta S (37); en la familia (35) existe un operador A; que
define a la familia X, similar a (40):

Xy ={Je¥;p(klp)>01i=9€ESX, #0 (43)

Dado el axioma de eleccién de la definicion 8; existe una
funcién de eleccién (7) global como en (42).

Sea una subfamilia finita {1} € S y debido a que X, #
? - fi(,) €X;.

=~ f1 es una funcion de eleccién que aplicaen {1, } .

Y por consecuencia una subfamilia S sera:

3fn =1, P} € lej -¥ (44)
Por induccién de (44) la siguiente subfamilia s sera:
fnsr = W1 Yn} EXy, ,, FO > (45)

Debido a que Xy,,, # @ se debe elegir un elemento:
Viengs € Xy - SER

)->j=1,..,n,
mﬂww={$9”q/=n+1n (45)
~ VS € (Xy)yes = () (46)

frne1€s una funcion de eleccion similar a Fggy, (42) para la
subfamilia tamafio n + 1.

Mediante el AC Zermelo-Fraenkel [5] [11] se deduce la
existencia de una funcion global.

IFgrw € [Tyes Xy (47)

S Forw:S > ¥ | Forw(P) €Xy  (48)

Que es la funcién de colapso formal GRW en una familia
CFIDQS mediante el axioma de eleccion m.

Demostracion 2

(42) es una funcién.

Debido a que la funcion de eleccion (2) basada en Fraenkel
[5] fue modernizada como un producto cartesiano en (4) y la
proposicion 1 demostré que (4) f € [1ie; 4; €s una funcion
de eleccién y cumple las caracteristicas de funciéon moderna al
contar con: dominio I, codominio U;¢ 4;, imagen f[I] €
Uier 4; Y la regla de correspondencia no ambigua i » f(i) |
f(i) € A;; asi como las condiciones de unicidad funcional:
(,x)eEfA(,y) €Ef »x=y; en donde f(i) es el Unico
elemento de A; emparejado con i; asi mismo en la
demostracion 2 de la proposicion 1 se cumple que (4) no es una
relacion y el teorema 8 demostrado por (33) describe una
funcién sustituida por S que depende de la eleccion aleatoria
bajo un indice k (31) Fepy: = S 2> ¥ | Ferw (W) =Yy I M E
N,¥:N > H, k ~Pspy, k €N.

Al contar (42) con las mismas caracteristicas y haber sido
obtenida mediante induccion de la proposicion 1y el teorema
8 los cuales fueron demostrados bajo la regla de existencia para
una funcion; entonces la funcién de eleccion (42) que

demuestra el colapso GRW [29] es una funcién y no una
relacion m

V1. SIMULACION ESTOCASTICA DEL MODELO DEL COLAPSO
FORMAL SLE-GRW COMO UNA FUNCION MEDIANTE EL
AXIOMA DE ELECCION PARA CIFDQS EN QISKIT

QISKIT [40] es un framework Open-source desarrollado
por IBM para computo cuantico que permite la simulacion de
sistemas cuanticos mediante el lenguaje Python mediante el
IDE Spyder desde computadoras personales hasta cuanticas.

La libreria QuantumCircuit permite para crear y manipular
circuitos cuanticos, los cuales son los algoritmos que utilizan
operaciones aritméticas y logicas cuanticas sobre qubits (bits
cuanticos)[41] el cual es ““...1a unidad basica de informacién
utilizada para codificar datos en computacién cuantica y
puede entenderse mejor como el equivalente cuantico del bit
tradicional utilizado por las computadoras clasicas para
codificar informacién en binario” [42].

La libreria AerSimulator permite emular una computadora
cuéntica de alto rendimiento dentro de Qiskit mediante
circuitos cuanticos, sus estados como vectores 0 matrices de
densidad; asi como simular condiciones como el ruido cuéntico
para comprobar modelos en distintos estados.

La libreria Statevector representa y analiza el estado
cuéntico completo de un sistema en un momento mediante la
creacion de instancias y vectores de estado de un circuito
cuantico el cual es ““...una secuencia de puertas cuanticas
(transformaciones unitarias) aplicadas a qubits, donde todo el
célculo se representa como un grafo aciclico dirigido cuyos
nodos son puertas y cuyos cables siguen la evolucion de los
estados cuénticos” [43] que devuelve una descripcién
matematica de las superposiciones de estados cuanticos de
todas las posibles configuraciones permitiendo simular
sistemas tedricos para obtener resultados medibles. A
continuacidn se describe el pseudocddigo del método choose

Método choose(k):

#Dada una familia indexada de estados discretos
#v = { v[k]: k € 1} € H,el Axioma de Elecciodn
#garantiza la existencia de una funcidn:
#f AC : I - H; T _AC(k) = ¥[k]donde cada ¥[k]es
#un representante elegido del conjunto V.

Entrada:

k : indice entero (k € 1)

self_family: familia ¥ = (y_0, ¢y 1, ..)

Procedimiento:

1. k pertenece al dominio f AC(k)=y k?

En caso contrario: error

2. Recuperar el estado:y « self.family[k]

3. Devolver ¥ como la eleccién de F_AC.
e
&M‘Ir«".'\(hr’ﬂﬁﬂ‘:/),

—

[ w — sell familyk] (_AC{K)=w:) ‘

T
&>

Fig. 1. Diagrama de flujo del método choose(k).
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El pseudocodigo de la clase funcién de eleccion del colapso
formal GRW mediante el axioma de eleccién para CIFDQS se
muestra a continuacion:

#Clase Funcioén de eleccion AC sobre una CIFDQS:
Clase ChoiceFunctionAC:

#Sea ¥ = { ¥Y[k]: k € 1} una familia indexada de
#estados discretos en un espacio de Hilbert H,
#donde I © N (familia contable).

k : indice entero

¥ : familia CIFDQS = (y_k) {k€I}

#Definiciéon funcidon de eleccioén:

Entrada:
family = (V. 0, v 1, ¥ 2, ..)
#Familia CIFDQS contable, v[k]€e H

Método inicializar(family):
self.family « family

Método choose(k):
#K € I y existe ¥[k]definido en family

Paso 1: ¢ « self.family[k]
si k no estéd en el dominio de V:
retornar ¥[k]

error

Paso 2: devolver ¥

Salida:
Y[k]seleccionado

{ Clase: ChowceFunclionAC ‘

l

{ Entrada: Familia ¥={wo ...} J

‘ self family — Y |

l

{ Clase hsla para elegr elementos ‘

Fig. 2. Clase ChoiceFunctionAC.

Una vez definida la clase AC y el método choose, se
presenta el pseudocodigo del modelo matematico para la
simulacién del colapso formal GRW mediante la funcién y
axioma de eleccion para CIFDQS descrito en la seccion
anterior.

Simulaciéon del Colapso formal GRW mediante la
funcion y axioma de eleccion para CIFDQ

Entrada:
N_TRAJ = numero de trayectorias (~1000)
T = nimero de pasos de evolucién-cuando (~6)

Inicializar:
Definir familia CIFDQS = {¢0, v1, U+,
Definir funcion de eleccidén AC(family)

Y-}

Definir estado inicial ¢ = c0]0) + cl]1)

Procedimiento principal:

Para cada trayectoria i en [1 ..
U « estado inicial
genealogia « lista vacia
registro probabilidades ~ lista vacia

N_TRAJ]:

Para cada tiempo t en [1 .. T]:

(1) Dinamica unitaria 6 t — (t+l) ‘m/6

¥ — U6 t) ¥; UO t) = RY (6 t); U(B_s)
(2)Probabilidades:distribucién_Born p (k| )=
I(v_k , v)]2 para cada estado ¢y k CIFDQS.
Normalizar p(k|y)

(3)Elegir k segun p(k|V) (evento GRW) (SLE)
Elegir k segun distribucidén p (k)
(4)Funcidn de eleccidn AC ¢ — AC.choose (k)
(5)Registrar (¥, p, amplitudes)

Registrar:
genealogia.append(k)

# indice del estado colapso ¢ k
registro probabilidades.append( p(k|Vy) )

# probabilidad Born asociada al colapso
Guardar genealogia y registro_probabilidades
Grafo_A: nodos secuenciales de 1 trayectoria.

Grafo B: muestreo de 200 nodos — arbol GRW.
Grafo C: matriz de transicién - cadena de
Markov .
Salida:

Genealogias GRW por trayectoria
# secuencias {kl1, k2, .., kT}

Distribuciones Born registradas en cada SLE
# p(k | ¥) en todos los pasos

Figuras(Born, arbol GRW, heatmap, histograma)

El programa Una vez definida la clase AC y el método
choose, se presenta Clase AC como regla de eleccion

Para lo cual hace uso de las librerias cientificas de numpy,
de graficado matplotlib, la creadora de grafos networkx, y los
ya descritos qiskit con sus modulos QuantumCircuit,
AerSimulator y Statevector.

La clase ChoiceFunctionAC genera una familia CIFDQS:
{¥0,y1,...} mediante la funcion de eleccion choose(self, k)
fAC(k) = y_k; si el indice esta fuera del dominio del AC
regresa self.family[k].

El sistema utiliza dos funciones: una para convertir
amplitudes y otra para vectores a forma polar mediante los
modulos de numpy np.abs(z) y np.angle(z).

Para las familias CIFDQS se genera la funcion
generate_CIFDQS() que devuelve una matriz de valores
complejos [psiO, psil].

El sistema genera una distribucion de Born [33] mediante
born_distribution(state, family) devolviendo una matriz de
probabilidad probs = [].

La funcion de colapso GRW GRW_collapse(state, family,
ac_choice) agrupa los datos anteriores retornando los datos
collapsed, k, probs.

Se genera una dinamica unitaria Qiskit gracias a la libreria
de simulacién de circuitos AerSimulator mediante el método
"statevector" devolviendo una matriz.

Para la simulacion GRW de 1000 trayectorias y 6 SLE se
generd la funcién simulate_ GRW(num_traj=1000, steps=6) en
donde se crean las familias CIFDQS() y se usa la funcion de
eleccion ac = ChoiceFunctionAC(family) con sus respectivas
matrices para trayectorias y grafos mediante U(8) y las
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amplitudes en forma polar para obtener los estados de colapso,
trayectorias, familia y datos.

La trayectoria individual de cada grafo se obtiene mediante
la. funcion def graph_single_trajectory(graph_data,
traj_index=0) en un analisis para ir agregando nodos con sus
distintas ramificaciones estocasticas y muestreos como la
funcion graph_branching(graph_data, sample_size=200).

La funcion para obtener la cadena de transicion de Markov
[38] estad dada por graph_markov(graph_data) gracias a la
libreria networkx mediante G = nx.DiGraph() agregando los
nodos Yoy Y1 .

El sistema produce finalmente los datos, grafos y gréficos
de las figuras4 ala 9.

El diagrama de flujo que explica lo anterior se describe en
la figura 3.

Evento SLE (GRW)
Elegir k ~ p(kjy)

Clase AC (Axioma de Eleccion)

TAC(K=w_k

CIFDQS: Familia Discreta de Estados
W={we, wi}

—

Estado Inicial
W(0) = [1W3, N(2/3)]

S

Aplicar AC: g — f_AC(k)
W=k

Registrar:
k. p(klw), amplitudes

Dinamica Unitaria (Qiskit) Si .
L — <6 pasos?
PR T T
¥
Probabilidades Born
PlKlw)=l{w_kw)

Salida
+ Genealogias GRW
= Distribuciones Born
+ Figuras (hist, arbol GRW, heatmap)

L

Fig. 3. Diagrama de flujo del sistema basado en el modelo matemético de
colapso formal GRW como una funcion de eleccion mediante el axioma de
eleccién para CIFDQS en QISKIT.

Para el desarrollo de los siguientes grafos genealogicos
[43] se utilizara la simbologia que se ha venido trabajando en
el modelo vy, su probabilidad y amplitud complejas del estado
y un modulo y fase de la forma re® [44].

La simulacién utiliza 1000 trayectorias y 6 colapsos
SLE GRW ; lo anterior genera una profundidad en el arbol
Qiskit. A continuacion se muestran los resultados de la
simulacion .

Las siguientes estructuras producto de la simulacion
reflejan la genealogia [43] de estados dentro de la familia
CIFDQS y el modelo GRW en donde cada colapso es
seleccionado mediante la funcidn de eleccién fAC de acuerdo
al axioma de eleccion Zermelo-Fraenkel.

La Figura 4 muestra el arbol genealdgico [43] de colapsos
GRW de la simulacién estocastica de 10 trayectorias
independientes para una correcta visualizacion con 6 eventos
SLE. El tiempo t discreto del proceso de colapso va de 0 a 5;
cabe resaltar que cada incremento de t corresponde a una
aplicacion de la dindmica unitaria [18] seguida de un evento
GRW por lo que no representa una magnitud real; por otro lado
las ordenadas representan el indice de la trayectoria [18] en
donde se observan las 10 realizaciones simultaneas [46] del
proceso. Cada nodo i, simboliza un colapso y las aristas
muestran la evolucién causal [6] dentro de cada trayectoria
[18]. La estructura resultante de la simulacién demuestra la no
unitariedad [6] [30] del modelo matematico, su estocasticidad

del colapso [30], su divergencia entre distintas trayectorias
producto de las fluctuaciones cuénticas [46] y la forma tipica
de ramificacion estocastica de un salto cuéntico [47].

Arbol genealdgico de colapsos GRW (10 trayectorias)

Estado seleccionado k
b

Tiempa (evento SLE)

Fig. 4. Grafo A. Una sola realizacion estocastica con 6 colapsos Y.

La Figura 5 muestra un grafico de calor (heatmap) de
transiciones GRW producto de la simulacién en donde se
obtiene una matriz de probabilidad de SLE donde el eje de las
abscisas indica el tiempo discreto t =[0—5] y en las
ordenadas el estado de colapso k € {0,1, ...} € CIFDQS. La
matriz heatmap indica un color de similar a la ecuacion (31)
de modo: p,(k) =p(k [ ¥(t)).

s Heatmap de pik|p(t)) para una trayectoria

0 0.5

. 04

. 0.3

j 0.2

) 01

35 00
o 1 2 3 4 5

Tiempo

Estado k

Fig. 5. Heatmap p. (k) = p(k | () ).

La Figura 6 muestra la simulacién respecto al espectro
Born [32] previo al colapso GRW mediante las probabilidades
de sus estados discretos y,, € ¥ < CIFDQS de acuerdo a (31)
y (43) serd p(k | ¥) = |y, P, |? . Las abscisas describen las
probabilidades Born [33] para dos estados: {1, 1 }=[0-~0.4]
previo al colapso y las ordenadas marcan los dos estados
discretos [18] mediante lineas que representan muestras
estadisticas de ellos; lo que permite observar en la simulacion
la asimetria probabilistica [21] inducida de la dindmica del
sistema simulado, su tendencia de cada estado a colapsar
hacia un valor dominante [18], la correspondencia con la
medida cuantica estandar (reglas de Born) [32] y que ¥ es una
familia discreta y normalizada.

Espectro Born previo al colapso GRW

0.4 4
0.3 4

0.2 1

Probabilidad Bomn

014

0.0+
05 00 05 10 15 20 25 30 35
Estado y_k

Fig. 6. Espectro Born previo al colapso.
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La Figura 7 describe el histograma final de la simulacién
de 1000 trayectorias en donde se puede apreciar en las abscisas
el estado de colapso k € {0,1} y en las ordenadas una
freq(k) = |{= ¥y }| de [0 — ~25] La Figura C presenta el
histograma de estados finales para 1000 trayectorias GRW,
cada una con 6 eventos de colapso SLE para cada trayectoria
que termina en iy,.

Lo anterior junto a la simulacion permiten describir
nuevamente su tendencia de cada estado a colapsar hacia un
valor dominante [18] y la consistencia con la medida cuéntica
estandar (regla de Born) [32] para cada estado mediante la
funcién fAC, la propagacion de forma estocastica del SLE, una
nueva normalizacion por el colapso SLE GRW distribucion no
trivial en el estado final y una emergencia macroscépica [18]
de datos producidos por un proceso cuantico no unitario [18].

Histograma de estados finales GRW (1000 trayectorias)

Frecuencia

100 4

o0 0.5 10 15 20 25 30
Estado k

Fig. 7. Histograma final después del colapso.

El grafo de genealogia [43] A de la figura 8 describe una
sola realizacion estocéstica .., del proceso de eleccién
mediante la funcién f, GRW similar a la funcion (45) en
donde se aprecian 6 colapsos SLE-GRW apreciados como
saltos cuénticos:

Wes1) = facke) | ke~p(klihy) (49)

GRAFO A - Trayectoria individual

1
s:
0.00 .000]
1.000-e"(i0.000)

Fig. 8. Grafo A. Una sola realizacion estocastica con 6 colapsos Y.

El grafo B de la figura 9 describe una submuestra del
conjunto de 1000 trayectorias de 200 nodos muestreados en el
grafo de genealogia [43] que forma el arbol GRW se describe
como:

To00 €T =

W9 kD, p, D} 1j=[1..1000],t = [1..6]  (50)

La ecuacion (50) y la simulacién describen un proceso de
ramificacion estocastico que demuestra el impacto de Born, la
no-unitariedad del sistema y el uso de la funcién fAC como
mecanismo determinista interno mediante el axioma de
eleccion de Zermelo-Fraenkel:

GRATDB - Arbol GRW (200 nodes|

Fig. 9. Grafo B. Submuestra del conjunto de 1000 trayectorias de 200
nodos muestreados en el grafo de genealogia que forma el arbol GRW.

Por ultimo el grafo C de la figura 10 describe como el
colapso GRW mediante una simulacién de dos estados ), de
SLE produce una cadena de transicion Markoviana [38] [41]
con sus respectivos pesos de transicién producidos por los
colapsos reales mediante una probabilidad de acuerdo a la
definicién 28 y la ecuacién (31):

P =P =9;) 1P =1; (51)

GRAFO C - Cadena de transicién GRW

0.514

Fig. 10. Grafo C. Cadena de transicion Markoviana y pesos producida
por dos estados en la simulacién SLE GRW.

El circuito cuantico del modelo que transita se describe
en lafigura 11 donde un solo qubit inicializaen (0)) | ¥ (0))
con una rotaciéon Ry(6) (dinamica unitaria) y una medicion
en la base computacional salida clasica k que alimenta la
funcidn de eleccion AC.

1.-Estado inicial

[Y0))=co 1 0)+c¢; 1) (52)
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2. Evolucién Unitaria

LY (0) = Ry (8) 1¥(0))
3. Medicion (M)

(53)
p(0 1Y) =lco 5pA 1Y) =lc 1> (54)

4. Funcioén de Eleccion AC

fac(k) =, (55)

m i

¥
Funcién de Eleccion AC
{_ACK)=y_k

Fig. 11. Circuito cuéntico.

CONCLUSIONES

Al realizar el modelo matematico del colapso formal SLE-
GRW [29] como una funcién mediante el axioma de eleccion
para familias infinitas contables de estados cuanticos discretos
se lograron los siguientes puntos relevantes:

La teoria de colapso formal planteado por Ghirardi-
Rimini-Weber de los eventos de localizacidn espontanea (SLE)
[29] carece de un modelo que justifique axiomaticamente el
salto elegido; por lo que la propuesta de usar el axioma de
eleccion de de Zermelo-Fraenkel [3][4][5][11] mediante la
funcién de eleccion f, formaliza la teoria desde un aspecto
matematico en la definicion 6 y la proposicién 1 con sus dos
respectivas demostraciones.

Se desarroll6 el concepto de familias infinitas contables de
estados cuénticos discretos (CIFDQS) mediante la definicion
22 y su ecuacion (24) para poder utilizar el axioma de eleccion
Zermelo-Fraenkel [5][11]; lo cual contribuye a la teoria de
colapso formal GRW-SLE [29] al estructurar como una
familia al conjunto de estados cuénticos mediante los
principios matematicos de la teoria de conjuntos [3][4][5][11].

Se comentaron y modernizaron los trabajos de Fraenkel[5]
y Zermelo[3][4] [11] para poder utilizarse con la teoria GRW-
SLE [29] en el articulo tanto en las definiciones como en los
primero 7 teoremas; para poder utilizar los conceptos de
urelementos, celdas, sistema generado y simetrias mediante la
funcion de eleccion £, para familias numerables.

Se logro6 que el concepto de AC en el contexto GRE-SLE
fuera independiente del resto de axiomas de Zermelo [11] por
el concepto de propiedad definidac.

Se realiz6 un programa en Python que permite la
simulacion del modelo matematico del colapso formal SLE-
GRW como una funcién mediante el axioma de eleccion para
CIFDQS en QISKIT mediante la creacion del método choose
y la funcién ChoiceFunctionAC A.

La simulacion permitio generar una realizacion estocéstica
con 6 colapsos ;.

La simulacién generé un matriz heatmap permitio obtener
un color de similar a la ecuacién (31) de modo: ptk=pky(t).

Se generd un espectro Born previo al colapso y su
histograma obtenido después del colapso.

Se gener6 un grafo con una sola realizacion estocastica

mediante 6 colapsos Y y posteriormente una submuestra del
conjunto de 1000 trayectorias de 200 nodos muestreados en el
grafo de genealogia del arbol.

Se generd en QISKIT una cadena de transicién Markoviana
con sus respectivos pesos producida por dos estados en la
simulacion.

Asi mismo QISKIT permitié simular un circuito cuantico.

Al existir un modelo matematico del colapso formal SLE-
GRW [29] como mediante la funcién de eleccion f, con el
axioma de eleccién ACy una estructura de familias CIFDQS;
esto establece el principio para la creacion de trabajos que
desarrollen axiomas similares a la teoria de conjuntos de
Zermelo-Fraenkel [3][4][5][11] para la teoria GRW-SLE [29].
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Resumen Los tres modelos matematicos que se plantean
generan desde lo tedrico, una abstraccion de la inteligencia
artificial donde el modelado de arbol y bosque con una
probabilidad, siendo utilizado en siete nuevas inversiones que
mejoran doce variables economicas. El problema de la
generacion de empleo, es abordado junto a el crecimiento del
delito con una ecuacidon de probabilidades que es deducible de las
causas y consecuencias derivadas. El tercer modelo es un fractal
cuantico que desde lo tedrico se demuestra con la autosimilitud y
dimension fractal y en lo cuantico con varias probabilidades para
un mismo método de busqueda. Usado en situacién de conflicto
armado, busqueda de personas y fisica.

Palabras Clave- cuantico, inteligencia artificial,
probabilidad.

Abstract- The three proposed mathematical models generate,
from a theoretical perspective, an abstraction of artificial
intelligence where tree and forest modeling with a probability is
used in seven new investments that improve twelve economic
variables. The problem of job creation is addressed alongside the
growth of crime with a probability equation that can be deduced
from the resulting causes and consequences. The third model is a
qguantum fractal that, theoretically, demonstrates self-similarity
and fractal dimension, and in quantum terms, it demonstrates
multiple probabilities for the same search method. It is used in
situations of armed conflict, search and rescue, and physics.

Keywords- quantum, artificial intelligence, fractal,
probability.

Mathematical Subject Classification: 81P15, 68T01, 28A80,
60-XX.

fractal,

I. INTRODUCCION

La basqueda de soluciones desde las ciencias duras para las
ciencias sociales y humanas, se potencia con la elaboracion de
modelos matematicos, en los nuevos paradigmas modernos
como lo son la inteligencia artificial, los fractales y la fisica
cuantica; que, junto a las probabilidades, generan un marco
conceptual y metodologico de amplias aplicaciones. Los
modelos tedricos son demostrados en blsqueda de personas,
simulacion de conflictos bélicos, fisica cuantica, siete nuevos
modelos de inversion, generacion de empleo y aumento de la
inseguridad o delito.

Il. DESARROLLO.

Axioma 1
Axiomas de Kolmogorov
1- No negatividad
Pr(x) =20

2- Normalizacion
fPr (x) = 1(osuma =
3- Aditividad

1 en caso discreto)

Se necesita
a) Dominio definido
b) Constante de normalizacion
c) Interpretacion fisica o geométrica

Estructura o dominio fractal — cuéntica
X € [0,2r] (periodicidad — estructura fractal ondulatoria)
a > 1 (evita divergencias)
C € reales.

Axioma fundamental

La probabilidad de ocurrencia de un evento x en un sistema
cuantico — fractal esta determinada por un peso exponencial
inverso de su fase ondulatoria

Axioma de normalizacion

Axioma de conservacion probabilistica

Existe una constante Z tal que

21
7 :f a—(cosx+c) dx
0 a—(cosx+c)
P(x) =
@) Z

Garantiza que

fznP(x) dx =1
0

Axioma de autosimilitud fractal

La distribucion de probabilidad es
transformaciones de escala angular
Axioma de interpretacién cudntica

La funcion P(x) no representa una probabilidad clasica
directa, sino la medida estadistica emergente de
interferencias cudnticas distribuidas fractal

invariante bajo

P(x) = 0
J-P(x) dx =1
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1
Teorema 1: Fractal cuantico. pr = plcosT+e). tn1
Si tenemos un fractal lineal con demostracion en su Pr =1
autosimilitud y dimension con un modelo de probabilidad de
estgdl_stlca circular, entonces podgmos_ |n_fer|_r que es un_frgctal Consideramos que el valor minimo de a nos lleva a la
cuantico ya que sus valores estan dISFI‘_IbUIdOS con distintas mayor probabilidad
probabilidades y su modelo de probabilidad es: P, =
a—(cosx+c)
L A > o©
Demostracion
Si tenemos el siguiente modelo de probabilidad en estadistica Para valores grandes de a tenemos
circular
) 1
Pr = gSinx Pr = e_oo
- -7 - - Pr = 0
Tomamos en consideracion un incremento de sin x
, La probabilidad es menor debido a altos valores de a
Pr = gSinx.Ax
Para valores pequefios C =0
Ax — dx 1
Pr = @Sinx.dx Pr = m
InPr = sinxdx.Lna _
Integro Pr = ecosx. Lna
InPr = (—cosx + c¢).Lna
Pr = Debido a su naturaleza cuantica los distintos valores de ¢
"= Slcosx+a). Ina nos llevan a distintas probabilidades
Pr = (e Lna )(— cos x+c)
(e Lna) =a C - oo
Pr = a—(cosx+c) 1
pr = e(cosx+ ©). Lna
Con lo que queda demostradom Pr = im
e
Escolio Pr =10
0<pPr<i . »
1<a< o Con altos valores de la constante de integracion c
0<c< o esperamos valores pequefios de probabilidad
T
0<x <=
) 2
Extremos relativos
X=0
1
Pr = e(cos0+c). Lna
1
Pr =

6(1+ c).Lna

Cuando x toma su minimo valor la Pr depende de las
variables C, A

X ==
21
Pr = ————
e(cos%+c). Lna
1
Pr = ————
e(cos%+c). Lna
1
pr = ec- Lna
.. . - Fig. 1. Fractal cuantico.
También podemos determinar que la probabilidad para g
valores de x = g 0 su maximo valor que dependen de las
variablesc, a
A=1
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Fig. 2. Modelo de probabilidad

Fractal en forma de circulos

Dimensién: partimos de la cantidad de cortes y

cantidad de repeticiones
Cortes: 4
Repeticiones: 5

D = ln5_ 1,16096
T ln4a

Esa es su dimension fractal, visto en [1]

Fractal en forma de circulos
Auto similitud
Partamos de la ecuacidn del circulo

x"2+ y? = R?

Producto Dx
Dx.x*+ Dx.y?> = Dx.R?

Producto por Dy
%3
3 Dy + x.y*.Dy = x.Dy.R?

x y
Y +X = x.y.R?
30 T3 -y
x3 y3
Y +X = x.y.R?
30 T3 -y
xZ yZ
— + = = R?
373

Si volvemos hacer los mismos pasos R se incrementa en
productos por 3
x% + y? = 3".R?

Por lo tanto, se demuestra la auto similitud de circulos en
otros circulos con un radio distinto, visto en [2]

Corolario
Sea la densidad de probabilidad fractal — cuéntica

—(cosx+c)
P(X) = —m a>1
Jo

T q—(cosx+c) gy

Entonces
La probabilidad se concentra preferentemente en las regiones
donde la fase oscilatoria es minima
Demostracion
1- La funcién exponencial inversa cumple: a™ es
estrictamente decreciente en'y
2- Como cos X € [-1,1] el exponente (cos x + c) es
minimo cuando cos x = -1 entonces x = a~ ("1 + 2
ik
3- En estos puntos
P(X) o a—(—1+C) = a(l—c)
4-  Los minimos probabilisticos ocurren cuando
5- Cos x =1 entonces x = 2 tk

La figura 1 nos muestra las propiedades de los fractales en
su autosimilitud al desprenderse estadisticamente de la figura
principal otras figuras parecidas. Esta autosimilitud estadistica
nos infiere también en la dimensién fractal que debe pertenecer
a los reales y no entera. La figura al dividirse en cuatro figuras
nuevas representa el niamero de cortes.

La figura 2 considera el modelo de probabilidades
propuesto, tiene como eje Z a la probabilidad Pr , los otros
ejes representan a las variables: a, c.

Su representatividad es esencial a la interpretacion matematica
del modelo cuéntico - fractal.

Teorema 2: Inteligencia artificial bosque

Si tenemos un modelo de probabilidades y = a(¢°s®) entonces

cada arbol de un bosque puede definirse como Pri =
alm*+) y el promedio de los arboles como una ecuacion de

bosque de la forma: Prb = (al*™¥1*e) 4 giimxered 4
L+ a7(15inxn+cn))/n

Demostracion
Si tenemos el siguiente modelo de probabilidad en estadistica
circular
P.r —_ acosx
Tomamos en consideracién un incremento de sin x
Pr = acosx. Ax
Para valores pequefios
Ax - dx
Pr = acosx. dx
LnPr = cosxdx.Lna
Integro
InPr = (sinx + c).Lna
1
Pr =

e(sinx+c). Lna
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Pr = (e Lna )(sinx+c)
(e Lna) =a
Pr = a(sinx+c)
Con lo que queda demostrado

X=0
Pr = a(sin0+c)
Pr = a®©

Cuando x toma su minimo valor la Pr depende de las
variables C, A

4 ". (AT AL AL TS
Q’ e iy
-Wﬂ'

AL

Figura 3. Modelo de arbol

Los parametros de la figura 3 son eje Z es la probabilidad

de arbol y los otros dos ejes son las variables: a, ¢c. Se observa

X = g valores entre 0 y 1 en el eje Z de la probabilidad
— (sinE+c) L o .
Pr = a2 Teorema 3: Si tenemos causas y consecuencias en un
su forma final serd: Pr =(1/

Pr = a(1+ c)

También podemos determinar que la probabilidad para
valores de x = g 0 su maximo valor que dependen de las

variables ¢, a
A=0
Pr = 0(5inx+c)
Pr =0

Consideramos que el valor minimo de a nos lleva a la
menor probabilidad

A=1

Para valores grandes de a tenemos

Pr = 1(sinx+c)
Pr =1

La probabilidad es mayor debido a altos valores de a

=0

c
— a(sinx +0)

Pr
Pr = a(sinx)

Debido a su naturaleza cuantica los distintos valores de ¢
nos llevan a distintas probabilidades

C—ow
Pr = a(sinx+00)

Pr = 0 debido a que un valor de a entre 0 y 1 potencia
infinito se va haciendo cada vez mas pequefio hasta llegar a 0

Bosque.

Prh = (aisinx1+cl) + agsinx2+c2) + .+ aglsinxn+cn))/n

Esta relacion matematica promedia los arboles en un

bosque de probabilidades, visto en [4]

© Autor(es) 2025. Articulo de acceso abierto bajo licencia CC BY-NC-ND @ ® ® ©

modelo,
2) .((((€C172.(Co11"2 + ...+ Colk”20))/k1) ~(1/

tl) + ((€C272.(Co21"2 + ... + Co2k))/k2) "(1/T2) +
.. + ((Cnn.(Conl1”2 + ... + Conk))/kn) ~(1/Tn)) /n

entonces

Ci: Causas
Coij: Consecuencias

Demostracion
Extremos relativos

2)
Ci =1
Pr =(1/2) .(((Co11"2 + ..+ Colk"20)/k1) ~(1/t1)
+ (((Co2172 + ...
+ Co2k))/k2) "(1/T2) + ..
+ (((Con1™2 + ..
+ Conk))/kn) ~(1/Tn)) /n

Cuando no encontramos causas la probabilidad depende
enteramente de Cij y Ti, visto en [5]

3)Coi =0
Pr =20
4) Coi =1
(1/2.((k1/EDM(1/t1) + (1/2.(k2/k2)MN(1/T2)
+ ... + ((kn/ kn) *(1/ tn)) /n
Pcc = % (1 +1+ ..+ 1)/n

Pcc =

Pcc = ¥
5Ti =0
Pr =0

Al hacer potencias de infinito los nimeros Ci y Coi van
disminuyendo su valor hasta no tener ninguno, visto en [6]
6)Ti »
Pr =%
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I1l. TEOREMAS Y AXIOMAS.

Teorema 1
1) Pr>0
Secumplesia>0ya=+1
Las funciones exponenciales son siempre positivas
2) Cota superior
0<Pr<i1
El exponente varia en
—(cosx +¢c) € (—(1 + ¢),— (-1 + ¢))
Entonces
PMAX = a 19 = (-9
Para exigir Pr < 1
a=9 <1
Esto explica
Sia>1->c =1
Si0<a<1->c¢c<1
Teorema 2
1) No negatividad
Pr =20
Se cumple axiomaticamente para a > 0
2) Cota superior
Sinx € [-1,1]
Exponente sinx + ¢ € [c —1,c+1]
Entonces
PrMIN = a1, PrMAX = a‘*!
Paraque Pr < 1
A) Sia>1ic+1<0->c¢c< -1
B) Si0<ax<1
C+1=20->C=-1
Para Pr = 0yabastaa > 0.

IV. EscoLlo.

En situacion de un conflicto bélico dos aspectos son
estudiados:
Lugares de refugio y busqueda de alimentos
Se simulan para cada uno de los cuatro circulos inscritos en el
circulo mayor del fractal, con nimeros pseudo aleatorios y la
variable normal

A) Lugares con muchos muertos y heridos (Referencia

estadistica promedio)

Media = 30% (sobre poblacién total)
Desvio =5 % (sobre poblacion total)

C1 = 0,28057
C2 = 0,36770
C3 = 0,28360
C4 = 0,36767

B) Lugares con muchos refugiados (Referencia
estadistica promedio)

Media = 70% (sobre el total de la poblacion)
Desvio = 10% (sobre el total de la poblacion)

X1 = 0,62291 = 56,6919°
X2 = 0,63251 = 56,9259°
X3 = 0,75693 = 68,1237°
X4 = 0,74187 = 66,7683°

C) Zonas maés criticas por ser estratégicas al enemigo

Media = 55% (sobre el total de la poblacion)
Desvio = 0,05% (sobre el total de la poblacion)

Al = 0,50266 = 7,18085
A2 = 0,55695 = 7,95642
A3 = 0,53410 = 7,63

A4 = 0,58993 = 8,42757
Calculemos las probabilidades del fractal cuantico
Pr1l: modelo de probabilidad que representa: A1,X1,C1
Pr2: modelo de probabilidad que representa: A2 ,X2,C2
Pr3: modelo de probabilidad que representa: A3,X3,C3
Pr4: modelo de probabilidad que representa: A4,X4,C4

Prl = 718085—(60556,6919°+0,28057)
Pr1 = 0,19481

Pr2 = 795642—(COS56,9259°+0,36770)
Pr2 = 0,15040

Pr3 =7 63—(605 56,6919°+0,28360)
,

Pr3 = 0,18411
Pr4 = 842757—(00566,7683°+0,36767)
Pr4 = 0,19701

Entonces se deduce que las cuatro probabilidades
corresponden a cuatro circulos del fractal y su naturaleza
cuéntica corresponde a que pueden estar en los cuatro circulos
con distintas probabilidades. También, se considera como las
mayores probabilidades son:  Pr4 = 0,19701y Prl =
0,19481.

La naturaleza cuantica es la que explica que a mayores
valores de las variables: a, ¢, x los valores de probabilidades
pueden ser menores o los méas grandes. Una deduccion del caso
para los menores valores de las variables que generan altas
probabilidades es que los apartados A, B, C son determinantes
en la supervivencia en zonas de conflictos; entonces
encontraremos refugios en lugares con pocas bajas humanas,
poca concentracion de refugiados y alejados de zonas
estratégicas para el enemigo.

Busquedas de personas y trata de personas
Simulamos distancias variables (variable c), con otros datos
constantes como ser zonas de peligro y cantidad de casos en
las zonas estudiadas
Media = 0,45 (distancia maxima con la Gltima vez que se vio a
la victima), referencia estadistica promedio

Desvio = 0,05
C1 = 0,51847
C2 = 0,45569
C3 = 0,42479
Zonas de peligro constantes (referencia estadistica
promedio)
A =6 (Kilémetros desde la zona que se observo por Ultima vez
a la victima)
Cantidad de casos en zonas estudiadas

X = 70°
Prl1 = 6—(Cos7o°+0,5184-7)
Prl = 0,21399
Pr2 = 6—(cos70°+0,45569)
Pr2 = 0,23947
Pr3 = 6—(cos70°+0,42479)
Pr3 = 0,25310

La conclusién que se saca es que a menores distancias de
la Gltima vez que se vio a la victima es mas probable

© Autor(es) 2025. Articulo de acceso abierto bajo licencia CC BY-NC-ND ©@ ® © ®

41



Journal de Objetos y Objetivos Matematicos No. 13; julio-diciembre 2025.

ISSN 2683-264X. https://joom.org.mx

encontrarla, entonces hay que buscar las primeras 12h en
lugares cercanos.
Veamos ahora la simulacion para areas de busqueda

Pr = 0,8 (laalta probabilidad sugerida aumenta el éxito en la
busqueda)

Pr = a—(cosx+c)
In08 = Ln7.(—(cos x + 0,25))

Ln 0,8 025 =

Tn7 ,25 = —cos x
Cos x = 0,36467
X = 68,61272°

Con una alta probabilidad de encontrar a la victima,
podemos inferir un dreade x = 68,61272° que ocupa mas de
los dos tercios del area total del circulo.

Fisica y area mas probable de encontrar a los electrones
Fijemos la cantidad de electrones en el litio cuyo nimero
atémico es 3 lo que significa 3 electrones en un atomo neutro

A = 3 (cantidad de electrones)

C =023
(volatilidad del electrén en su naturaleza cuantica)
Pr = 0,5
Pr = a—(cosx+c)
In0,5 = Ln3.(—(cos x + 0,23))
Ln 0,5 023 —
In3 23 = —cosx
Cos x = 0,86092
X = 30,57996°

El area queda en un tercio del total del circulo, lo que deja
como corolario que la variable cuantica ¢, es de vital
importancia.

Teorema 2
Pr = a(sin x+c)
Siete modelos de inversion

Caso 1: Se invierte desde una aplicacion, bajando los costos
operativos, para nuevas y actuales empresas pymes; y se cobra
tanto el capital como los intereses desde cada compra o
consumo de productos de fabricacién nacional descontando de
los impuestos que el consumidor o inversor genera en la
compra. Los beneficiarios del préstamo lo pagan en cuotas al
estado, que es el que financia los impuestos y garante final.

Caso 2: Idéntico formato que el primero, pero para invertir
en empresas de produccion primaria o agricultura y ganaderia

Caso 3: ldéntico al primero, con inversiones en empresas
tecnoldgicas.

Caso 4: ldéntico al primero, con inversiones en empresas
industriales que explotan y le dan valor agregado a la
produccion primaria de agricultura y ganaderia.

Caso 5: ldéntico al primero, con inversiones en empresas
industriales en general.

Caso 6: ldéntico al primero, con inversiones en la obra
publica, aqui el que paga es el estado.

Caso 7: ldéntico al primero, con inversiones en la
construccion de vivienda para ciudadanos que son los que
pagan el préstamo.

Beneficios, visto en [7]

1- Las inversiones generan riquezas en el aumento del PBI

2— Baja de los impuestos para los inversores

3— Aumento de mano de obra y del consumo

4— Mayor recaudacién impositiva del estado

5- Menor evasion

6— Viviendas para ciudadanos

7- Obra publica que mejora las ciudades y pueblos

8- Al aumentar la mano de obra se mejora la recaudacion para
beneficios de los jubilados

9- Mayor ingreso de nuevos emprendedores en los siete
modelos de inversion, lo que genera ingresos de divisas al pais.
10 — Baja del riesgo pais

11- Baja de la inflacion al mejorar la oferta y bajar impuestos
12 — Se podria bajar los impuestos de los emprendedores y
demas ciudadanos al aumentar la recaudacion final del pais
Simulamos las variables para los siete modelos de inversion

Media = 0,35 (corresponde a un aumento porcentual del
crédito)

Desvio = 0,05

Al = 0,34951

A2 = 0,37418

A3 = 0,37981

A4 = 0,40647

A5 = 0,41082

A6 = 0,31429

A7 = 0,30356

Tomemos como referencia un valor constante para la variable
X que es el porcentaje de sociedad beneficiada

X =70° (mas de los dos tercios de la poblacién beneficiada)
Pr = 0,85 (alta probabilidad sugiere un crecimiento del PBI)

Caso 1
In 0,85 = (sin70° + ¢).Ln 0,34951
c = —-0,78509

La constante C en el calculo de un valor negativo, pero a los
fines matematicos y no superficialmente se toma como valor
positivo. Entonces queda

C =0,78509
Traduciéndose que casi el 1% del PBI crecera con este crédito
a las pymes
Caso 2
In 0,85 = (sin70° + ¢).Ln 0,37418
C = —0,77436
Convierto en un valor positivo
Cc = 0,77436
Con lo que queda casi un aumento del 1% del PBI
Caso 3
In 0,85 = (sin70° + ¢).Ln 0,37981
c = —0,77181
Convierto en un valor positivo
c = 0,77181
Aumento aproximado de 1% de PBI
Caso 4
In 0,85 = (sin70° + ¢).Ln 0,40647
C = —0,75916
Convierto en un valor positivo
C = 0,75916
Cercano al 1% de crecimiento de PBI
Caso 5
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Ln 0,85 = (sin70° + ¢).Ln 0,41082

¢c = —0,75700

Convierto en un valor positivo
¢ = 0,75700

Se aumento casi 1% de PBI
Caso 6
Ln 0,85 = (sin70° + ¢).Ln 0,31429

Cc = —0,79928

Convierto en un valor positivo

C = 0,79928

Se aumento casi 1% de PBI
Caso 7
Ln 0,85 = (sin70° + ¢).Ln 0,30356

¢ = —0,80337
Convierto en un valor positivo
¢ = 0,80337

Se aumento casi 1% de PBI
Veamos como sigue la inteligencia artificial expuesta en un
bosque

Pr = (0,78509 + 0,77436 + 0,77181 + 0,75916
+ 0,75700 + 0,79928 + 0,80337) /7
Pr = 0,77858

Entonces la conclusién final es que un aumento del 35% en los
créditos, un 0,85 de probabilidad y méas de dos tercios de los
habitantes beneficiados tiene como objetivo cumplido un
aumento del 0.77858% del PBI.

Partamos del analisis de causas y consecuencias
Caso 1

Causas: inversion privada y publica
Consecuencias: Generacion de empleo

Co1: Publico, tasa de pablico = 0,3

Co2: Privado, tasa de lo privado = 0,4

Demostracion

Pr1 = 0,75
Cal = 0,85

(partimos de una inversion muy favorable)
Tl = 6 meses

Ca2 = 0,55
(no es tan favorable la inversion)
Pr2 = 0,45

T2 = 8 meses
075 = %.(085. (0,3.C4 + 04.C%))"/°

045 > %.(055.(0,3.C4 + 04.C3))"/®

Este sistema de ecuaciones con dos incognitas lo resolvemos
analiticamente

Ln(0,75.2) = 1/6.Ln (085.(03.C4 + 04.C3))
243279 = Ln (085.(03.C4 + 04.C))
(0,3.631 + 0,4.632) < 13,40072

La segunda inecuacidn tiene el siguiente analisis

Ln (0,45.2) > 1/8.Ln (0,55.(0,3.Co1% + 0,4.C022))
—0,84288 > Ln (0,55.(0,3.Co1% + 0,4.C02?))

(03.c2 +04.c%)< 078267

Quedando un sistema de dos ecuaciones cuadraticas que
pueden ser resueltas con programacion no lineal. Se uso6
software matemético LINGO

(¢ + k) - max
(03.c3 +04.c%) < 1340072

(03.c2 +04.c%)< 078267

Los resultados en el software libre LINGO arrojan para Col,
Co2
Col = 1,615209
Co2 =0

Entonces la primera consecuencia es la solucion y podemos
esperar que se generarda mayor cantidad de empleos publicos,
que es Co1 =1,615209. Interpretamos este valor como un
incremento de 1.615209% del PBI en empleos publicos.

Segundo ejemplo

Caso 2

Empleos mal pagados generan la necesidad de ganar mas
dinero con la delincuencia, visto en [8]

P, =0,75

Ca =0,85 (un 85% de los casos de empleos mal pagados)

T =9 (en meses es el tiempo de ruptura entre lo legal e ilegal)
Co: Entrar en la delincuencia como opcion de obtener mayores
ganancias

Pr=(C,.Co)Yt

0,75=(0,85.C,)/°

Ln0,75=1/9.Ln (0,85 . Co)

-2,58913 =Ln (0,85 . Co)

0,85 . Co - e—2,58913

C, =0,08833

La conclusion extraida de los analisis matematicos es que
alrededor del 8,833% de la poblaciéon que cobra magros
sueldos en el lapso de 9 meses podria dedicarse a la
delincuencia.

V. CONCLUSIONES.

El planteo de diferentes tematicas sensibles y de urgente
resolucién es abstraida con tres modelos matematicos
originales; generando un enfoque sistémico y conceptual de
dificil abordaje. Siendo notorio el vacio institucional de los
temas analizados, se plantean estos modelos matematicos
originales para replantear y llenar ese vacio, muchas veces
argumental y enfocado a las interacciones entre las ciencias
duras y ciencias sociales. Este objetivo es cumplido y la
sistematizacion de procesos complejos ayuda a las
instituciones y demas actores privados a valerse de ellos para
jerarquizar y resolver tales problemas.
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